13 research outputs found

    Biogeochemistry of hadal trenches: Recent developments and future perspectives

    No full text
    Hadal trenches with water depth ranging from 6000 to 11,000 m are the deepest biogeochemical province in the world's oceans. Due to technological challenges of sampling and observation at such extreme depths, these trenches are one of the least exploited habitats on our planet. Recent findings show high sedimentation rates, high biomass, intense microbial activity and chemosynthetic communities in hadal trenches, suggesting that they may play a more important role in global ocean biogeochemical cycles than previously recognized. Here we review the hadal biogeochemistry in four aspects: food supply and its effect on hadal life; hadal carbon cycle; microbial-mediated stable carbon isotope fractionation in biosynthesis of lipids under high hydrostatic pressures; and pollution in the hadal trenches. Our current knowledge of hadal biogeochemistry is rudimentary and many fundamental questions remain to be answered. However, with the rapid development of the full-ocean-depth exploration and sampling technologies, it is very likely hadal scientists will make significant breakthroughs in hadal biogeochemistry research in the coming decades

    Sea surface temperature and terrestrial biomarker records of the last 260 ka of core MD05-2904 from the northern South China Sea

    No full text
    This paper reports high-resolution biomarker records of the last 260 ka for core MD05- 2904 from the northern South China Sea (SCS). The sea surface temperature (SST) record using the U-37(k') index reveals a minimum of 21.5 degrees C (MIS 2) and a maximum of 28.3 degrees C (MIS 5.5), for a temperature difference of almost 7 degrees C, and provides the longest high-resolution U-37(k') SST record in northern SCS. The content of odd-number long chain n-alkanes and several n-alkanes indexes such as the CPI, ACL and the C-31/C-27 ratio, all reveal generally higher values during the glacials and lower values during the interglacials. Terrestrial input as indicated by n-alkane content was mostly controlled by sea-level changes: During the glacials, lower sea-level exposed the continental shelf to enable rivers to transport more terrestrial materials to the slope; and the situation reverses during the interglacials. The n-alkane indexes changes reveal more n-alkanes from contemporary vegetation during glacials as a result of the proximity of the core site to the source region, while the increases in ACL and C-31/C-27 ratio during glacials indicate a change to more grassy vegetation. However, the highest values for CPI, ACL and the C-31/C-27 ratio all occurred during late MIS 3, and it was suggested that this period was characterized by a strong summer monsoon-dominated humid climate which resulted in a denser vegetation for the exposed continental shelf region

    Distribution of tetraether lipids in surface sediments of the northern South China Sea: Implications for TEX86 proxies

    No full text
    Archaea have unique glycerol dialkyl glycerol tetraether (GDGT) lipids that can be used to develop paleotemperature proxies such as TEX86. This research is to validate proposed GDGT-proxies for paleotemperature determination in the South China Sea (SCS). Samples were collected from core-top sediments (0–5 cm) in the northern SCS. Total lipids were extracted to obtain core GDGTs, which were identified and quantified using liquid chromatography-mass spectrometry (LC-MS). The abundance of isoprenoidal GDGTs (iGDGTs) ranged from 271.5 ng/g dry sediment to 1266.3 ng/g dry sediment, whereas the branched GDGTs (bGDGTs), supposedly derived from terrestrial sources, ranged from 22.2 ng/g dry sediment to 56.7 ng/g dry sediment. The TEX86-derived sea surface temperatures ranged from 20.9 °C in the coast (water depth  1000 m). TEX86-derived temperatures near shore (<160 m water depth) averaged 23.1 ± 2.5 °C (n = 4), which were close to the satellite-derived winter mean sea surface temperature (average 22.6 ± 1.0 °C, n = 4); whereas the TEX86-derived temperatures offshore averaged 27.4 ± 0.3 °C (n = 7) and were consistent with the satellite mean annual sea surface temperature (average 26.8 ± 0.4 °C, n = 7). These results suggest that TEX86 may record the sea surface mean annual temperature in the open ocean, while it likely records winter sea surface temperature in the shallower water

    GDGT-based proxies of sediment core YD0903

    No full text
    We reconstruct the environmental evolution of the East China Sea in the past 14 kyr based on glycerol dialkyl glycerol tetraethers (GDGTs) in a sediment core from the subaqueous Yangtze River Delta. Two primary phases are recognized. Phase I (13.8-8 cal kyr BP) reflects a predominantly continental influence, showing distinctly higher concentrations of branched GDGTs (averaged 143 ng/g dry sediment weight, dsw) than isoprenoid GDGTs (averaged 36 ng/g dsw), high BIT index (branched vs. isoprenoid tetraethers) values (>0.78) and a fluctuating GDGT-0/crenarchaeol ratio (R0/5, varied from 0.52 to 3.81). Within this interval, temporal increases of terrestrial and marine influence are attributed to Younger Dryas (YD) (ca. 12.9-12.2 cal kyr BP) cold event and melt-water pulse (MWP) -1B (11.5-11.1 cal kyr BP), respectively. The prominent transition from 8 to 7.9 cal kyr BP shows a sharp decrease in BIT index value (<0.4) and increase in crenarchaeol, which marks the beginning of phase II. Afterwards, the proxies remain relatively constant, which indicates that phase II (7.9 cal kyr BP-present) is a shelf sedimentary environment with high stand of sea level. Overall, the BIT index in our record serves as a good marker for terrestrial influence at the site, and likely reflects the flooding history of the region. The TEX86 (TetraEther Index of tetraethers consisting of 86 carbons) proxy is not applicable in phase I because of an excess terrestrial influence; but it seems to be valid for revealing the annual SST in phase II (21.6±0.9°C, n=49). In contrast, the MBT'/CBT (Methylation of Branched Tetraethers and Cyclization of Branched Tetraethers) proxy appears to faithfully record the annual mean air temperature (MAT) (14.3±0.63°C, n=68) and presents an integrated signal over the middle and lower Yangtze River drainage basin

    Evolution of the East China Sea sedimentary environment in the past 14 kyr: Insights from tetraethers-based proxies

    No full text
    We reconstruct the environmental evolution of the East China Sea in the past 14 kyr based on glycerol dialkyl glycerol tetraethers (GDGTs) in a sediment core from the subaqueous Yangtze River Delta. Two primary phases are recognized. Phase I (13.8–8 cal kyr BP) reflects a predominantly continental influence, showing distinctly higher concentrations of branched GDGTs (averaged 143 ng/g dry sediment weight, dsw) than isoprenoid GDGTs (averaged 36 ng/g dsw), high BIT index (branched vs. isoprenoid tetraethers) values (>0.78) and a fluctuating GDGT-0/crenarchaeol ratio (R 0/5, varied from 0.52 to 3.81). Within this interval, temporal increases of terrestrial and marine influence are attributed to Younger Dryas (YD) (ca. 12.9–12.2 cal kyr BP) cold event and melt-water pulse (MWP) -1B (11.5–11.1 cal kyr BP), respectively. The prominent transition from 8 to 7.9 cal kyr BP shows a sharp decrease in BIT index value (<0.4) and increase in crenarchaeol, which marks the beginning of phase II. Afterwards, the proxies remain relatively constant, which indicates that phase II (7.9 cal kyr BP-present) is a shelf sedimentary environment with high stand of sea level. Overall, the BIT index in our record serves as a good marker for terrestrial influence at the site, and likely reflects the flooding history of the region. The TEX86 (TetraEther Index of tetraethers consisting of 86 carbons) proxy is not applicable in phase I because of an excess terrestrial influence; but it seems to be valid for revealing the annual SST in phase II (21.6±0.9°C, n=49). In contrast, the MBT'/CBT (Methylation of Branched Tetraethers and Cyclization of Branched Tetraethers) proxy appears to faithfully record the annual mean air temperature (MAT) (14.3±0.63°C, n=68) and presents an integrated signal over the middle and lower Yangtze River drainage basin

    Composition and origin of lipid biomarkers in the surface sediments from the southern Challenger Deep, Mariana Trench

    No full text
    The surface sediments collected from the southern Mariana Trench at water depths between ca. 4900 m and 7068 m were studied using lipid biomarker analyses to reveal the origin and distribution of organic matters. For all samples, an unresolved complex mixture (UCM) was present in the hydrocarbon fractions, wherein resistant component tricyclic terpanes were detected but C27–C29 regular steranes and hopanes indicative of a higher molecular weight range of petroleum were almost absent. This biomarker distribution patterns suggested that the UCM and tricyclic terpanes may be introduced by contamination of diesel fuels or shipping activities and oil seepage elsewhere. The well-developed faults and strike-slip faults in the Mariana subduction zone may serve as passages for the petroleum hydrocarbons. In addition, the relative high contents of even n-alkanes and low Carbon Preference Indices indicated that the n-alkanes were mainly derived from bacteria or algae. For GDGTs, the predominance of GDGT-0 and crenarchaeol, together with low GDGT-0/Crenarchaeol ratios (ranging from 0.86 to 1.64), suggests that the GDGTs in samples from the southern Mariana Trench were mainly derived from planktic Thaumarchaeota. However, the high GDGT-0/crenarchaeol ratio (10.5) in sample BC07 suggests that the GDGTs probably were introduced by methanogens in a more anoxic environment. Furthermore, the n-alkanes C19–C22 and the n-fatty acids C20:0–C22:0 were depleted in 13C by 3‰ compared to n-alkanes C16–C18 and the n-fatty acids C14:0–C18:0, respectively, which was interpreted to result from the preferential reaction of fatty acid fragments with carbon “lighter” terminal carboxyl groups during carbon chain elongation from the precursors to products. The abundance of total alkanes, carboxylic acids, alcohols and total lipids were generally increased along the down-going seaward plate, suggesting the lateral organic matter inputs play an important role in organic matter accumulation in hadal trenches. The extremely high contents of biomarkers in sample BC11 were most likely related to trench topography and current dynamics, since the lower steepness caused by graben texture and proximity to the trench axis may result in higher sedimentation rate. This paper, for the first time, showed the biomarker patterns in surface sediments of the Mariana Trench and shed light on biogeochemistry of the hardly reached trench environment. Keywords: Mariana Trench, Lipid biomarkers, Organic matter, Topography, Hydrodynamic

    compositionandoriginoflipidbiomarkersinthesurfacesedimentsfromthesouthernchallengerdeepmarianatrench

    No full text
    The surface sediments collected from the southern Mariana Trench at water depths between ca. 4900m and 7068m were studied using lipid biomarker analyses to reveal the origin and distribution of organic matters. For all samples, an unresolved complex mixture (UCM) was present in the hydrocarbon fractions, wherein resistant component tricyclic terpanes were detected but C 27 –C 29 regular steranes and hopanes indicative of a higher molecular weight range of petroleum were almost absent. This biomarker distribution patterns suggested that the UCM and tricyclic terpanes may be introduced by contamination of diesel fuels or shipping activities and oil seepage elsewhere. The well-developed faults and strike-slip faults in the Mariana subduction zone may serve as passages for the petroleum hydrocarbons. In addition, the relative high contents of even n -alkanes and low Carbon Preference Indices indicated that the n -alkanes were mainly derived from bacteria or algae. For GDGTs, the predominance of GDGT-0 and crenarchaeol, together with low GDGT-0 n -alkanes C 19 –C 22 and the n -fatty acids C 20:0 –C 22:0 were depleted in 13 C by 3‰ compared to n -alkanes C 16 –C 18 and the n -fatty acids C 14:0 –C 18:0 , respectively, which was interpreted to result from the preferential reaction of fatty acid fragments with carbon “lighter” terminal carboxyl groups during carbon chain elongation from the precursors to products. The abundance of total alkanes, carboxylic acids, alcohols and total lipids were generally increased along the down-going seaward plate, suggesting the lateral organic matter inputs play an important role in organic matter accumulation in hadal trenches. The extremely high contents of biomarkers in sample BC11 were most likely related to trench topography and current dynamics, since the lower steepness caused by graben texture and proximity to the trench axis may result in higher sedimentation rate. This paper, for the first time, showed the biomarker patterns in surface sediments of the Mariana Trench and shed light on biogeochemistry of the hardly reached trench environment

    Combination of the gut microbiota and clinical indicators as a potential index for differentiating idiopathic membranous nephropathy and minimal change disease

    No full text
    AbstractObjectives: Membranous nephropathy (MN) and minimal change disease (MCD) are two common types of nephrotic syndrome that have similar clinical presentations but require different treatment strategies. Currently, the definitive diagnosis for these conditions relies on invasive renal biopsy, which can be limited in clinical practice.Methods: In this study, we aimed to differentiate idiopathic MN (IMN) from MCD using clinical data and gut microbiota. We collected clinical data and stool samples from 115 healthy individuals, 115 IMN, and 45 MCD at the onset of disease and performed 16S rRNA sequencing. Through machine learning methods including random forest, logistic regression, and support vector machine, a classifier to differentiate IMN from MCD was constructed.Results: Baseline clinical data comparing the IMN and MCD groups showed that the MCD had higher levels of hemoglobin, uric acid, cystatin C, β2-microglobulin, α1-microglobulin, total cholesterol, and low-density lipoprotein and lower levels of albumin and CD4+ T-cell counts. The gut microbiota of the two groups differed at all levels of the phylum and genus. Differential gut microbiota may disturb the integrity of the intestinal wall and lead to the passage of inflammatory mediators through the intestinal barrier, causing kidney injury. We constructed a noninvasive classifier with a discrimination efficacy of 0.939 that combined the clinical data and gut microbiota information to identify IMN and MCD.Conclusions: The classifier of the gut microbiota combined with clinical indicators has achieved good performance in identifying IMN and MCD, which provides a new approach for the noninvasive discrimination of different pathological types of kidney disease
    corecore