55 research outputs found

    Radiomics-Guided Deep Learning Networks Classify Differential Diagnosis of Parkinsonism.

    Get PDF
    The differential diagnosis between atypical Parkinsonian syndromes may be challenging and critical. We aimed to proposed a radiomics-guided deep learning (DL) model to discover interpretable DL features and further verify the proposed model through the differential diagnosis of Parkinsonian syndromes. We recruited 1495 subjects for 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) scanning, including 220 healthy controls and 1275 patients diagnosed with idiopathic Parkinson's disease (IPD), multiple system atrophy (MSA), or progressive supranuclear palsy (PSP). Baseline radiomics and two DL models were developed and tested for the Parkinsonian diagnosis. The DL latent features were extracted from the last layer and subsequently guided by radiomics. The radiomics-guided DL model outperformed the baseline radiomics approach, suggesting the effectiveness of the DL approach. DenseNet showed the best diagnosis ability (sensitivity: 95.7%, 90.1%, and 91.2% for IPD, MSA, and PSP, respectively) using retained DL features in the test dataset. The retained DL latent features were significantly associated with radiomics features and could be interpreted through biological explanations of handcrafted radiomics features. The radiomics-guided DL model offers interpretable high-level abstract information for differential diagnosis of Parkinsonian disorders and holds considerable promise for personalized disease monitoring

    Decoding the dopamine transporter imaging for the differential diagnosis of parkinsonism using deep learning.

    Get PDF
    PURPOSE This work attempts to decode the discriminative information in dopamine transporter (DAT) imaging using deep learning for the differential diagnosis of parkinsonism. METHODS This study involved 1017 subjects who underwent DAT PET imaging ([11C]CFT) including 43 healthy subjects and 974 parkinsonian patients with idiopathic Parkinson's disease (IPD), multiple system atrophy (MSA) or progressive supranuclear palsy (PSP). We developed a 3D deep convolutional neural network to learn distinguishable DAT features for the differential diagnosis of parkinsonism. A full-gradient saliency map approach was employed to investigate the functional basis related to the decision mechanism of the network. Furthermore, deep-learning-guided radiomics features and quantitative analysis were compared with their conventional counterparts to further interpret the performance of deep learning. RESULTS The proposed network achieved area under the curve of 0.953 (sensitivity 87.7%, specificity 93.2%), 0.948 (sensitivity 93.7%, specificity 97.5%), and 0.900 (sensitivity 81.5%, specificity 93.7%) in the cross-validation, together with sensitivity of 90.7%, 84.1%, 78.6% and specificity of 88.4%, 97.5% 93.3% in the blind test for the differential diagnosis of IPD, MSA and PSP, respectively. The saliency map demonstrated the most contributed areas determining the diagnosis located at parkinsonism-related regions, e.g., putamen, caudate and midbrain. The deep-learning-guided binding ratios showed significant differences among IPD, MSA and PSP groups (P < 0.001), while the conventional putamen and caudate binding ratios had no significant difference between IPD and MSA (P = 0.24 and P = 0.30). Furthermore, compared to conventional radiomics features, there existed average above 78.1% more deep-learning-guided radiomics features that had significant differences among IPD, MSA and PSP. CONCLUSION This study suggested the developed deep neural network can decode in-depth information from DAT and showed potential to assist the differential diagnosis of parkinsonism. The functional regions supporting the diagnosis decision were generally consistent with known parkinsonian pathology but provided more specific guidance for feature selection and quantitative analysis

    Navigating surface reconstruction of spinel oxides for electrochemical water oxidation

    Get PDF
    Understanding and mastering the structural evolution of water oxidation electrocatalysts lays the foundation to finetune their catalytic activity. Herein, we demonstrate that surface reconstruction of spinel oxides originates from the metal-oxygen covalency polarity in the MT–O–MO backbone. A stronger MO–O covalency relative to MT–O covalency is found beneficial for a more thorough reconstruction towards oxyhydroxides. The structure-reconstruction relationship allows precise prediction of the reconstruction ability of spinel pre-catalysts, based on which the reconstruction degree towards the in situ generated oxyhydroxides can be controlled. The investigations of oxyhydroxides generated from spinel pre-catalysts with the same reconstruction ability provide guidelines to navigate the cation selection in spinel pre-catalysts design. This work reveals the fundamentals for manipulating the surface reconstruction of spinel pre-catalysts for water oxidation

    Differential diagnosis of parkinsonism based on deep metabolic imaging indices.

    Get PDF
    The clinical presentations of early idiopathic Parkinson's disease (PD) substantially overlap with those of atypical parkinsonian syndromes like multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). This study aimed to develop metabolic imaging indices based on deep learning to support the differential diagnosis of these conditions. Methods: A benchmark Huashan parkinsonian PET imaging (HPPI, China) database including 1275 parkinsonian patients and 863 non-parkinsonian subjects with 18F-FDG PET images was established to support artificial intelligence development. A 3D deep convolutional neural network was developed to extract deep metabolic imaging (DMI) indices, which was blindly evaluated in an independent cohort with longitudinal follow-up from the HPPI, and an external German cohort of 90 parkinsonian patients with different imaging acquisition protocols. Results: The proposed DMI indices had less ambiguity space in the differential diagnosis. They achieved sensitivities of 98.1%, 88.5%, and 84.5%, and specificities of 90.0%, 99.2%, and 97.8% for the diagnosis of PD, MSA, and PSP in the blind test cohort. In the German cohort, They resulted in sensitivities of 94.1%, 82.4%, 82.1%, and specificities of 84.0%, 99.9%, 94.1% respectively. Employing the PET scans independently achieved comparable performance to the integration of demographic and clinical information into the DMI indices. Conclusion: The DMI indices developed on the HPPI database show potential to provide an early and accurate differential diagnosis for parkinsonism and is robust when dealing with discrepancies between populations and imaging acquisitions

    Frequency-Dependent Relationship Between Resting-State fMRI and Glucose Metabolism in the Elderly

    Get PDF
    Both glucose metabolism and resting-state fMRI (RS-fMRI) signal reflect hemodynamic features. The objective of this study was to investigate their relationship in the resting-state in healthy elderly participants (n = 18). For RS-fMRI signal, regional homogeneity (ReHo), amplitude of low frequency fluctuations (ALFF), fractional ALFF (fALFF), and degree of centrality (DC) maps were generated in multiple frequency bands. Glucose uptake was acquired with 18F-fluorodeoxyglucose positron emission tomography (FDG-PET). Linear correlation of each pair of the FDG-PET and RS-fMRI metrics was explored both in across-voxel way and in across-subject way. We found a significant across-voxel correlation between the FDG-PET and BOLD-fMRI metrics. However, only a small portion of voxels showed significant across-subject correlation between FDG-PET and BOLD-fMRI metrics. All these results were similar across all frequency bands of RS-fMRI data. The current findings indicate that FDG-PET and RS-fMRI metrics share similar spatial pattern (significant across-voxel correlation) but have different underlying physiological importance (non-significant across-subject correlation). Specifically, FDG-PET measures the mean glucose metabolism over tens of minutes, while RS-fMRI measures the dynamic characteristics. The combination of FDG-PET and RS-fMRI provides complementary information to reveal the underlying mechanisms of the brain activity and may enable more comprehensive interpretation of clinical PET-fMRI studies. Future studies would attempt to reduce the artifacts of RS-fMRI and to analyze the dynamic feature of PET signal

    Unsupervised Joint Image Denoising and Active Contour Segmentation in Multidimensional Feature Space

    No full text
    We describe a new method for simultaneous image denoising and level set-based active contour segmentation using multidimensional features. We consider an image to be a surface embedded in a Riemannian manifold. By defining a metric in the embedded space, which in our case includes multidimensional image features as well as a level set-based active contour model, a minimization problem in the image space can be obtained through the Polyakov action framework. The resulting minimization problem is solved with a dual algorithm for efficiency. Benefits of this new method include the fact that it is independent of any artificial “running” parameters, and experiments using both synthetic and real images show that the method is robust with respect to noise and blurry object boundaries

    Individual brain metabolic connectome indicator based on Kullback-Leibler Divergence Similarity Estimation predicts progression from mild cognitive impairment to Alzheimer's dementia.

    Get PDF
    PURPOSE Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) reveals altered cerebral metabolism in individuals with mild cognitive impairment (MCI) and Alzheimer's dementia (AD). Previous metabolic connectome analyses derive from groups of patients but do not support the prediction of an individual's risk of conversion from present MCI to AD. We now present an individual metabolic connectome method, namely the Kullback-Leibler Divergence Similarity Estimation (KLSE), to characterize brain-wide metabolic networks that predict an individual's risk of conversion from MCI to AD. METHODS FDG-PET data consisting of 50 healthy controls, 332 patients with stable MCI, 178 MCI patients progressing to AD, and 50 AD patients were recruited from ADNI database. Each individual's metabolic brain network was ascertained using the KLSE method. We compared intra- and intergroup similarity and difference between the KLSE matrix and group-level matrix, and then evaluated the network stability and inter-individual variation of KLSE. The multivariate Cox proportional hazards model and Harrell's concordance index (C-index) were employed to assess the prediction performance of KLSE and other clinical characteristics. RESULTS The KLSE method captures more pathological connectivity in the parietal and temporal lobes relative to the typical group-level method, and yields detailed individual information, while possessing greater stability of network organization (within-group similarity coefficient, 0.789 for sMCI and 0.731 for pMCI). Metabolic connectome expression was a superior predictor of conversion than were other clinical assessments (hazard ratio (HR) = 3.55; 95% CI, 2.77-4.55; P < 0.001). The predictive performance improved further upon combining clinical variables in the Cox model, i.e., C-indices 0.728 (clinical), 0.730 (group-level pattern model), 0.750 (imaging connectome), and 0.794 (the combined model). CONCLUSION The KLSE indicator identifies abnormal brain networks predicting an individual's risk of conversion from MCI to AD, thus potentially constituting a clinically applicable imaging biomarker

    Inhibitory effects of Belamcanda extract on inflammatory response and antiviral mechanism in H9N2 Avian influenza virus: insights from in vitro and in vivo studies

    No full text
    ABSTRACT: Avian influenza, particularly the H9N2 subtype, presents significant challenges to poultry health, underscoring the need for effective antiviral interventions. This study explores the antiviral capabilities of Belamcanda extract, a traditional Chinese medicinal herb, against H9N2 Avian influenza virus (AIV) in specific pathogen-free (SPF) chicks. Through a comprehensive approach, we evaluated the impact of the extract on cytokine modulation and crucial immunological signaling pathways, essential for understanding the host-virus interaction. Our findings demonstrate that Belamcanda extract significantly modulates the expression of key inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), interleukin-2 (IL-2), and interleukin-6 (IL-6), which are pivotal to the host's response to H9N2 AIV infection. Western blot analysis further revealed that the extract markedly reduces the expression of critical immune signaling molecules such as toll-like receptor 3 (TLR3), TIR-domain-containing adapter-inducing interferon-β (TRIF), and nuclear factor kappa B (NF-κB). These insights into the mechanisms by which Belamcanda extract influences host immune responses and hinders viral replication highlight its potential as an innovative antiviral agent for poultry health management. The study advances our comprehension of natural compounds' antiviral mechanisms and lays the groundwork for developing strategies to manage viral infections in poultry. The demonstrated ability of Belamcanda extract to modulate immune responses and inhibit viral replication establishes it as a promising candidate for future antiviral therapy development, especially in light of the need for effective treatments against evolving influenza virus strains and the critical demand for enhanced poultry health management strategies
    • …
    corecore