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Abstract: The differential diagnosis between atypical Parkinsonian syndromes may be challeng-
ing and critical. We aimed to proposed a radiomics-guided deep learning (DL) model to discover
interpretable DL features and further verify the proposed model through the differential diagno-
sis of Parkinsonian syndromes. We recruited 1495 subjects for 18F-fluorodeoxyglucose positron
emission tomography (18F-FDG PET) scanning, including 220 healthy controls and 1275 patients
diagnosed with idiopathic Parkinson’s disease (IPD), multiple system atrophy (MSA), or progressive
supranuclear palsy (PSP). Baseline radiomics and two DL models were developed and tested for
the Parkinsonian diagnosis. The DL latent features were extracted from the last layer and subse-
quently guided by radiomics. The radiomics-guided DL model outperformed the baseline radiomics
approach, suggesting the effectiveness of the DL approach. DenseNet showed the best diagnosis
ability (sensitivity: 95.7%, 90.1%, and 91.2% for IPD, MSA, and PSP, respectively) using retained
DL features in the test dataset. The retained DL latent features were significantly associated with
radiomics features and could be interpreted through biological explanations of handcrafted radiomics
features. The radiomics-guided DL model offers interpretable high-level abstract information for
differential diagnosis of Parkinsonian disorders and holds considerable promise for personalized
disease monitoring.

Keywords: radiomics; deep learning; Parkinsonian; brain PET imaging; glucose metabolism

1. Introduction

Atypical Parkinsonian syndrome is a group of diseases on the progressive neurode-
generative spectrum that affects the nervous system and the parts of the motor system
controlled by nerves [1,2]. Clinical differential diagnosis between atypical Parkinsonian
syndromes can be challenging and critical due to their potential to lead to vastly different
Parkinsonian disorders [3–5]. Patients with idiopathic Parkinson’s disease (IPD) exhibit a
clinical phenotype primarily characterized by parkinsonism, which can be asymmetric
and responsive to levodopa. This phenotype strongly resembles the clinical syndromes
seen in patients with multiple system atrophy (MSA) and progressive supranuclear
palsy (PSP) [6,7]. Accurate and sensitive biomarkers for the differential diagnosis of
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Parkinsonian syndromes allow us to pursue more aggressive therapeutic strategies for
individual patients.

Neuroimaging, particularly positron emission tomography (PET) with 18F-fluorode
oxyglucose (FDG) tracing, has been widely used to discover a wide spectrum of glu-
cose metabolism pathological abnormalities [8–10]. Previous studies proposed various
approaches based on visual evaluation and metabolic pattern analyses to develop more
aggressive tools for the differential diagnosis of Parkinsonian disorders [11]. In particular,
the metabolic disease’s pattern has been successfully demonstrated as a proper surrogate
for differential Parkinsonian diagnosis [12–15]. However, these pattern analyses employ
imaging data transformed into vector features and discover hyper- or hypo-metabolism
brain regions, hence underutilizing the information of various dimension hierarchies.
Meanwhile, recent studies also employed radiomics analysis into PET images and extracted
high-dimensional and multi-hierarchical features for designing classification or prognos-
tic models [16–18]. Abnormal metabolic regions are quantified with obvious features,
typically focusing on local uptake heterogeneity or hyper- or hypo-metabolism bound-
aries. Nevertheless, a significant drawback is that radiomics features are often defined by
mathematically or semantically handcrafted characteristics based on established expert
knowledge. Although an increasing number of radiomics features are being proposed,
abstract features derived from PET images seldom capture the full scope of information.

Recently, the emergence of artificial intelligence has shown a meaningful breakthrough
and impressive progress owing to the advances in computing power and big data [19–21].
Previous studies have demonstrated that deep learning (DL) based on PET brain imaging
may discover the wide spectrum of physiological changes and the metabolic differences
between different Parkinsonian disorders and provide comparative or even superior diag-
nostic performance [3,22,23]. Previous studies had achieved sensitivities of 98.1%, 88.5%,
and 84.5% and specificities of 90.0%, 99.2%, and 97.8%, respectively, for the diagnosis
of IPD, MSA, and PSP [3,22]. However, the difficulty of interpretation and the absence
of well-rooted explanations about the deep learning model limits its clinical application.
However, some approaches such as gradient-weighted class activation mapping provide
limited explanations, which focus on the highlighted brain regions contributing to the
deep learning models [24,25]. The features derived from latent layers or other layers are
difficult to link with the underlying pathology. Moreover, the more interpretable radiomics
approach may assist the DL model by enhancing its interpretability.

Thus, we aimed to propose a radiomics-guided DL model to discover interpretable DL
features from PET images and further verify the proposed model through the differential
diagnosis of Parkinsonian syndromes. We hypothesized that the radiomics-guided DL
model may capture the complex glucose metabolic changes and abstract semi-supervised
features associated with different Parkinsonian syndromes.

2. Materials and Methods
2.1. Participants

We recruited 1495 subjects who underwent FDG PET scanning, including 220 healthy
controls and a total of 1275 Parkinsonian patients with IPD, MSA, and PSP. All subjects
were enrolled from the Huashan Parkinsonian PET Imaging (HPPI) Database established by
Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University. All
procedures involving human participants were conducted in accordance with the ethical
standards of the institutional and/or national research committee and the 1964 Declaration
of Helsinki and its later amendments or comparable ethical standards. This study’s data
analysis and ethical approval were granted by the institutional review board of Huashan
Hospital (identifier: KY2011-174, Date: 24 August 2011), and informed consent was ob-
tained from all subjects.

We investigated three independent cohorts of these subjects to develop and assess our
proposed radiomics-guided DL model, as previously described [22]. In brief, the pretraining
cohort consisted of 220 healthy controls and 398 Parkinsonian patients (241 IPD, 79 MSA,
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and 78 PSP) with clinically possible diagnoses, or with onset age < 40 years, or without
detailed chart information. The pretraining cohort was used for preliminary training for
the exclusion of non-Parkinsonian subjects. The training cohort contained 547 Parkinsonian
patients (299 IPD, 150 MSA, and 98 PSP) with a clinically definite diagnosis, which was
used to fine-tune the preliminary DL model. The test cohort consisted of 330 Parkinsonian
patients (211 IPD, 61 MSA, and 58 PSP) with a clinically confirmative diagnosis, which was
used to evaluate the prediction performance. A detailed eligibility profile of these subjects
is shown in Figure 1.
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Figure 1. Flow of subjects through this study.

Patients with a history of structural brain abnormalities were excluded. All patients
with Parkinsonian diagnosis satisfied the diagnostic criteria according to the latest clinical
criteria [26–28]. Patients were assessed by movement disorder specialists based on their
return visits (at least once) after PET examination and were further stratified into three
clinical typings termed as clinically possible, clinically definite, and clinically confirmative
diagnoses analogous to that described previously [22].

2.2. PET Acquisition and Preprocessing

After attenuation correction using low-dose CT, the emission scan was acquired 60 min
post-injection of approximately 185 MBq ± 18.5 of FDG and lasted 10 min (Siemens Bi-
ograph 64 HD PET/CT, Siemens Healthcare, Erlangen, Germany). PET images were
reconstructed using the ordered subset expectation maximization (OSEM) method. FDG
PET images were spatially normalized to the PET brain template in the Montreal Neu-
rological Institute (MNI) brain space using SPM12 software (Wellcome Department of
Imaging Neuroscience, Institute of Neurology, London, UK) implemented in Matlab 9.11.0
(Mathworks Inc., Sherborn, MA, USA). Finally, normalized PET images were smoothed
with a three-dimensional Gaussian filter of 10 mm full width at half maximum (FWHM).
Local glucose metabolic activity normalized to global activity was measured using the
standardized uptake value ratio (SUVR).

2.3. Baseline Radiomics Analysis

FDG PET images in the training and test cohorts were used to extract radiomics
features using the open-source PyRadiomics 3.1.0 software [29]. Cortical and subcorti-
cal regions of interest (ROIs) were identified using the automated anatomical labeling 3
(AAL3) [30,31] and PD25 atlases [32] and included the following 20 regions: frontal cor-
tex, parietal cortex, occipital cortex, temporal cortex, globus pallidus, nucleus accumbens,
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ventral tegmental, locus coeruleus, raphe nucleus, dentate nucleus, substantia nigra, red
nucleus, subthalamic nucleus, caudate, putamen, pallidum, thalamus, medulla oblongata,
midbrain, and pons base. From each ROI, 107 radiomics features were extracted as shown
in Supplementary Table S1. A total of 2140 radiomics features were measured, reflecting
the shape, glucose uptake distribution, texture (gray-level co-occurrence matrix, GLCM;
gray-level run-length matrix, GLRLM; gray-level size zone matrix, GLSZM), and margin
characteristics (Neighborhood Gray-Tone Difference Matrix, NGTDM) from the above
20 ROIs. Each radiomics feature was normalized using Z-scores, calculated from the mean
and standard deviation of the feature values within the training cohort.

We employed multinomial logistic regression (LR) with a one-vs.-all strategy in the
training cohort to select radiomics features for constructing the baseline radiomics model.
This model integrates selected radiomics features to classify different Parkinsonian dis-
orders. The optimal radiomics feature set and coefficients were determined using nested
five-fold cross-validation and the least absolute shrinkage and selection operator (LASSO)
in the training dataset. In detail, 80% of the training cohort was used for model training,
and the remaining 20% was used as a validation dataset to test model parameters. The test
cohort was used to evaluate the diagnostic performance of the proposed radiomics model.
Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV)
were assessed.

2.4. Radiomics-Guided DL Model

Figure 2 shows the graphical description of training the DL model and selecting candi-
date DL features guided by radiomics features for the differential diagnosis of Parkinsonian
disorders. To extract abstract semi-supervised information on Parkinsonian disorders, the
FDG PET images in the pretraining cohort were fed to a 3-dimensional residual network
(ResNet) and Dense network for preliminary training for the exclusion of non- Parkinsonian
subjects. Both deep learning models have demonstrated good classification performance
in prior medical imaging studies, making them suitable as exemplar models for in-depth
research [33–35].
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We first pretrained the 121-layered DenseNet and 18-layered ResNet in the pretraining
cohort for Parkinsonian diagnosis. The ResNet consisted of 18 layers, organized into eight
residual blocks, each containing 2 convolutional layers. The architecture included an initial
convolutional layer followed by a max pooling layer. Each residual block comprised two
convolutional layers with a ReLU activation function and batch normalization. The Dense
architecture included 121 layers, consisting of dense blocks, where each layer was connected
to every other layer in a feed-forward fashion. The network comprised four dense blocks
separated by transition layers that included convolution and pooling operations. Each
dense block contained multiple layers with batch normalization, ReLU activation, and
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convolutional operations. Subsequently, we incorporated feature extraction from the
pretrained models for IPD, MSA, and PSP diagnosis in the training and test cohort. The
final layers of the pretrained networks were removed, allowing the networks to serve
as feature extractors. By inputting 96 × 96 × 96-sized images, we obtained 65,280 and
122,800 DL features from the last convolutional layer of ResNet and DenseNet, respectively,
as the latent variables representing the DL features of the metabolic abnormality patch.

All DL features were Z-score normalized using the mean and standard deviation of
the training cohort before further processing. To select and filter the candidate DL features,
we measured the correlation between all pairs of radiomics and DL features, retaining
those with an absolute Pearson’s correlation greater than 0.4 and a Bonferroni-corrected
p-value less than 0.05 in the training cohort. Our goal was to identify and explain key DL
features in the latent layer. We then developed a compact radiomics-guided DL model by
correlating radiomics features with DL features. The selected DL features were used in
the multinomial logistic regression (LR) model. This multinomial LR model based on DL
features was applied to the test cohort to evaluate its predictive performance.

2.5. Statistics Analysis

We used the one-way analysis of variance (ANOVA) with Bonferroni multiple com-
parisons to compare continuous-valued information and the Chi-square test to compare
gender information. The multinomial LR model was employed to measure the classification
performance of the retained features. And the Odds Ratio (OR) of the LR model was used
to assess the effect of independent features on the differential diagnosis of Parkinsonism.
All statistical analyses were conducted using SPSS Statistics 24. Two-sided p values of less
than 0.05 were considered significant.

3. Results
3.1. Demographics

The clinical and demographic information of patients is shown in Table 1. The PSP
patients were relatively older than other groups, with statistical significance (p < 0.001). The
neuropsychological scores of Parkinsonian disorders differed significantly (p < 0.001), with
lower Hoehn and Yahr stage scores and Unified Parkinson’s Disease Rating Scale (UPDRS)
scores in IPD patients. There was no significant group difference for gender (all p > 0.05).

Table 1. Clinical and demographic information of 1275 patients with different Parkinsonian disorders.

IPD MSA PSP p Value

Pretraining cohort

n 241 79 78 /
Gender (M/F) 154/87 42/37 45/33 0.202
Age 50.0 ± 15.2 57.5 ± 10.6 64.6 ± 8.6 <0.001
Symptom duration (months) / / / /
Hoehn and Yahr stage / / / /
UPDRS / / /

Training cohort

n 299 150 98 /
Gender (M/F) 166/133 78/72 60/38 0.359
Age 60.2 ± 8.5 57.8 ± 8.0 67.2 ± 8.0 <0.001
Symptom duration (months) 45.3 ± 46.0 24.3 ± 17.1 35.0 ± 20.7 <0.001
Hoehn and Yahr stage 2.2 ± 1.0 3.1 ± 0.8 3.2 ± 0.8 <0.001
UPDRS 27.0 ± 14.3 30.6 ± 14.5 30.1 ± 13.5 0.02

Test cohort

n 211 61 58 /
Gender (M/F) 130/81 32/29 39/19 0.241
Age (years) 60.0 ± 7.6 58.5 ± 6.3 65.1 ± 6.6 <0.001
Symptom duration (months) 39.0 ± 41.3 27.0 ± 20.1 34.1 ± 22.7 0.062
Hoehn and Yahr stage 1.9 ± 0.9 2.9 ± 0.8 3.0 ± 0.8 <0.001
UPDRS 22.8 ± 12.1 29.3 ± 14.4 26.8 ± 11.0 <0.001

Note: Unified Parkinson’s Disease Rating Scale (UPDRS); IPD: idiopathic Parkinson’s disease; MSA: multiple
system atrophy; PSP: progressive supranuclear palsy.



Brain Sci. 2024, 14, 680 6 of 12

3.2. Baseline Radiomics Model

Radiomics analysis was used to calculate a total of 2140 features for each subject and
was further regarded as a benchmark model. We used the cross-validation and LASSO
method to penalize the differential diagnosis model. After the feature selection in the
randomized cross-validations in 500 iterations, 35 top features were selected as the optimal
feature set. Table S2 shows the differential diagnosis performance using radiomics for
both training and test datasets. The sensitivity in the test dataset was 79.7% for IPD,
55.7% for MSA, and 56.1% for PSP. This modest diagnosis performance of radiomics
indicates that metabolism abnormalities of MSA/PSP are less distinct compared to other
atypical Parkinsonian syndromes. This suggests the need for higher-dimensional features
to accurately identify these subtle metabolism dysfunctions.

3.3. Radiomics-Guided DL Model

Table S3 summarizes the classification performances of the initial ResNet and Dense
network. Relative to the baseline radiomics model, these two networks significantly
enhanced the accuracy of differential diagnosis among Parkinson’s disease subtypes, partic-
ularly for the MSA and PSP phenotype, achieving sensitivity exceeding 85%. Through the
first correlation filtering of DL latent features, we retained 48 and 73 DL features for ResNet
and DenseNet with corresponding Bonferroni-corrected r-values over 0.4. By sorting the
LASSO regression weight coefficients, we retained four DL latent features from each model
to construct the multinomial LR models for ResNet and DenseNet. The classification perfor-
mances of these radiomics-guided DL models are shown in Table 2. The diagnosis ability
using radiomics-guided DL models across both training and test datasets surpassed that
achieved solely through radiomics, suggesting the superior efficacy of the DL approach.
DenseNet showed the best diagnosis ability (sensitivity: 95.7%, 90.1%, and 91.2%; speci-
ficity: 93.2%, 97.3%, and 97.4%; PPV: 96.2%, 88.7%, and 88.1%; NPV: 92.4%, 97.7%, and
98.1% for IPD, MSA, and PSP, respectively) for different Parkinsonian syndromes using
retained DL features in the test dataset. Therefore, we conducted in-depth analyses of the
DenseNet model in the subsequent analysis.

Table 2. The classification performance of the radiomics-guided ResNet and Dense network model
for the differential diagnosis of Parkinsonian disorders.

Group Sensitivity Specificity PPV NPV

ResNet

Training cohort
IPD 0.959 0.931 0.944 0.950

MSA 0.920 0.982 0.951 0.970
PSP 0.979 0.997 0.989 0.995

Test cohort
IPD 0.896 0.855 0.917 0.821

MSA 0.819 0.973 0.877 0.959
PSP 0.877 0.956 0.806 0.973

DenseNet

Training cohort
IPD 0.973 0.959 0.966 0.967

MSA 0.966 0.992 0.979 0.987
PSP 0.969 0.997 0.989 0.993

Test cohort
IPD 0.957 0.932 0.962 0.924

MSA 0.901 0.973 0.887 0.977
PSP 0.912 0.974 0.881 0.981

Table 3 shows the retained DL latent features of the radiomics-guided DenseNet
model and its diagnosis ability for each Parkinsonian disorder. Our analysis revealed
that DenseNet_Latent_13280 exhibited superior discrimination ability for MSA (OR = 15.6,
95% CI: 6.84–35.7, p < 0.001) and IPD (OR = 0.11, 95% CI = 0.06–0.20, p < 0.001), whereas
DenseNet_Latent_15017 demonstrated higher discrimination ability for PSP (OR = 4.47,
95% CI: 1.63–12.3, p < 0.001).
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Table 3. The logistic regression results of radiomics-based DenseNet model and the retained
DL features.

Feature Group Standardized Coefficients (β) Odds Ratio (OR, 95% CI) p-Value

DenseNet_Latent_13280
IPD −2.161 0.11 (0.06–0.20) <0.001

MSA 2.748 15.6 (6.84–35.7) <0.001
PSP −0.218 0.81 (0.38–1.67) 0.561

DenseNet_Latent_2239
IPD 0.657 1.93 (0.94–3.94) 0.071

MSA −1.885 0.15 (0.05–0.44) <0.001
PSP 1.498 4.47 (1.63–12.3) <0.001

DenseNet_Latent_15017
IPD −2.095 0.12 (0.05–0.26) <0.001

MSA 0.746 2.11 (0.58–7.63) 0.255
PSP 0.728 2.07 (0.95–4.52) 0.066

DenseNet_Latent_28203
IPD −0.740 0.47 (0.25–0.88) 0.018

MSA −0.513 0.59 (0.18–1.95) 0.395
PSP 1.108 3.03 (1.61–5.71) <0.001

Note: IPD: idiopathic Parkinson’s disease; MSA: multiple system atrophy; PSP: progressive supranuclear palsy;
CI: confidence interval.

3.4. Interpretation of the DL Features with Radiomics

To retain the DL features in a radiomics-guided manner and enhance their inter-
pretability, we calculated the correlations between all possible DL features and radiomics
features. Table 4 shows the DenseNet latent features associated with radiomics features.
The Dense_Latent_13280 feature demonstrated significant associations with 97 radiomics
features (p < 0.05). Among these, 10 radiomics features exhibited an absolute correlation co-
efficient exceeding 0.5, and the GLCM correlation in the ventral tegmental area showed the
most significant association (r = 0.607, p < 0.001). Dense_Latent_2239 was significantly as-
sociated with 51 of the radiomics features, 5 of the radiomics features exhibited an absolute
correlation coefficient exceeding 0.5, and the GLCM autocorrelation in the raphe nucleus
area showed the most significant association (r = −0.555, p < 0.001). Dense_Latent_15017
was significantly associated with 74 of the radiomics features, 7 of the radiomics features
exhibited an absolute correlation coefficient exceeding 0.5, and the GLRLM high gray-level
run emphasis in the subthalamic nucleus area showed the most significant association
(r = 0.582, p < 0.001). Dense_Latent_28203 was significantly associated with 51 of the ra-
diomics features, 6 of the radiomics features exhibited an absolute correlation coefficient
exceeding 0.5, and the GLCM difference entropy in the red nucleus area showed the most
significant association (r = 0.542, p < 0.001).

The linkage between DL latent features and handcrafted radiomics features could
interpret DL features and facilitate the tracking of high-level abstract information regarding
abnormal metabolic activity. In the DenseNet model, the Dense_Latent_13280 feature could
be interpreted as a composite of five GLCM features, three GLRLM features, one GLSZM
feature, and one first-order feature. Each of these 10 radiomics features has well-defined
mathematical definitions, thereby providing a degree of interpretability. Notably, these
handcrafted features are based on biological principles, offering potential insights into their
significance and relevance. The correlation of GLCM measures the linear dependency of
gray-level values on their respective voxels in the GLCM and was the most contributing
radiomics feature for Dense_Latent_13280. The other three DL latent features could also be
similarly characterized. For example, the Dense_Latent_2239 feature could be interpreted
as a combination of four GLCM features and one GLRLM feature. Moreover, radiomics
features that were significantly associated with the DL latent features were mainly located
in the red nucleus, raphe nucleus, midbrain, nucleus accumbens, and cingulate. And
most of those DL latent features belonged to the GLCM features. The GLCM features
mostly reflected the metabolic dysfunction of abnormal brain regions, thereby allowing for
biological interpretation.
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Table 4. The correlation results between radiomics features and retained DL features.

DL Feature Category Radiomics Features Brain Region Location r-Value

Dense_Latent_13280
GLRLM Long run emphasis Frontal lobe 0.525
GLSZM Large area emphasis Frontal lobe 0.519
GLCM Difference variance Caudate −0.513
GLCM Correlation Ventral tegmental 0.607
GLCM Difference variance Ventral tegmental −0.586
GLCM Difference average Red Nucleus −0.536

GLRLM High gray-level run emphasis Raphe nucleus −0.507

GLRLM Long run high gray-level
emphasis Raphe nucleus −0.502

GLCM Sum average Nucleus accumbens 0.542
First-order Variance Midbrain −0.505

Dense_Latent_2239
GLRLM Gray-Level Variance Cingulate 0.527
GLCM Difference variance Ventral tegmental −0.551
GLCM Correlation Red Nucleus 0.519
GLCM Autocorrelation Raphe nucleus −0.555
GLCM Sum average Nucleus accumbens 0.534

Dense_Latent_15017
GLRLM Gray-Level Variance Cingulate 0.537
GLRLM High gray-level run emphasis Subthalamic nucleus 0.582
GLCM Difference variance Red Nucleus −0.566
GLCM Autocorrelation Raphe nucleus −0.572

GLRLM High gray-level run emphasis Raphe nucleus −0.527
GLCM Correlation Nucleus accumbens 0.516

First-order Variance Midbrain −0.503

Dense_Latent_28203

GLSZM Large-area high gray-level
emphasis Cingulate 0.529

GLCM Difference entropy Red nucleus 0.542
GLCM Cluster prominence Raphe nucleus −0.527
GLSZM High gray-level zone emphasis Subthalamic nucleus 0.513
GLRLM Gray-Level Variance Subthalamic nucleus 0.540

First-order Variance Midbrain −0.524

Note: GLCM: gray-level co-occurrence matrix; GLSZM: gray-level size zone matrix; GLRLM: gray-level run-
length matrix.

4. Discussion

Interpretable imaging-based biomarkers may contribute to the discovery of abnormal
brain regions distinguishing between different Parkinsonian disorders, thereby enhancing
our understanding of the underlying biology [36]. In this study, we investigated the in-
terpretability of the radiomics-guided DL model using FDG-PET images and found that
integrating DL with radiomics enables the exploration of brand-new metabolic features.
This integration combines the strong classification capabilities of DL with the interpretabil-
ity of radiomics, significantly enhancing the analysis of Parkinsonian syndromes.

A previous study suggested that an estimated 20–30% of patients initially diagnosed
with PD undergo reclassification, following pathological examinations, as either MSA or
PSP [37]. This misdiagnosis significantly impacts clinical care and research trials, result-
ing in inaccurate prognoses and variable therapeutic responses in both PD and atypical
Parkinsonian syndromes [38]. Previous studies had employed the DL algorithm into FDG-
PET images and dopamine transporter PET images, achieving a diagnostic accuracy of
98.6% [3,22]. However, the lack of interpretability or the limited interpretability of DL
poses constraints on its clinical application and its utility in elucidating the mechanisms
underlying Parkinsonian syndromes, particularly concerning the pathological distinctions
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between symptoms. Our results show that the radiomics-guided DL approach is feasible
for the differential diagnosis of Parkinsonian syndromes.

In this study, we adopted ResNet and DenseNet, two widely used DL models in medi-
cal imaging, for initial training in the pretraining cohort to achieve Parkinsonian diagnosis.
Subsequently, fine-tuning was conducted within the training cohort to accomplish the
differential diagnosis of Parkinsonian syndromes. Our findings show that the DenseNet
model demonstrates superior classification results. Our subsequent analyses concentrate
solely on investigating it within DenseNet. The DL latent features were extracted from
the final layer of each DL model, as this layer typically encapsulates the most abstract
information. Correlation analysis of DL latent features and radiomics was employed for
feature selection to mitigate the challenge posed by an excessive number of features and
the difficulty in achieving interpretability. In the radiomics-guided DenseNet model, we ob-
served four latent features, Dense_Latent_13280, Dense_Latent_2239, Dense_Latent_15017,
and Dense_Latent_28203, showed absolute correlation coefficients exceeding 0.5 with 10,
5, 7, and 6 radiomics features, respectively. Each DL latent feature could be elucidated
as a composite of various handcrafted radiomics features. Notably, radiomics features
indicative of glucose metabolism emerged as predominant across all four DL features,
affirming the significance of distinctive glucose metabolism patterns in the differential
diagnosis of Parkinsonian disorders. In detail, the long run emphasis of GLRLM mea-
sures the distribution of long run lengths, the large area emphasis of GLSZM measures
the distribution of large-area size zones, the correlation of GLCM measures the linear
dependency of gray-level values to their respective voxels, difference variance of GLCM
reflects the heterogeneity that places higher weights on differing intensity level pairs that
deviate more from the mean, and the high gray-level run emphasis of GLRLM measures
the concentration of high gray-level values in the image. These radiomics measure the
intensity and texture information of SUVR within the specific region and further offer
a comprehensive characterization of glucose hyper-/hypo- metabolism within the brain
region. Moreover, our findings show that radiomic features significantly related to DL
latent features are mainly located in the red nucleus, raphe nucleus, midbrain, nucleus
accumbens, and cingulate. These findings are in line with previous studies showing that the
MSA group exhibited pronounced hypometabolism in the putamen, pons, and cerebellum
relative to both normal controls and the IPD group [39–41]. Moreover, PSP demonstrated
notable hypometabolism in the caudate nucleus, thalamus, midbrain, and cingulate gyrus
compared to normal controls, the IPD group, and the MSA group [42–45]. Detailed de-
scriptions of deep learning features will help clinicians gain a deeper understanding of
Parkinson’s disease and discover new, more effective imaging markers. The integration
of deep learning and imaging omics will catalyze the development of effective tools for
large-scale clinical imaging using artificial intelligence.

This study has several limitations. Our study employed two common DL models to
perform the radiomics-guided DL approach. Other DL models may have higher diagnosis
ability and provide comprehensive abstract information from FDG PET images, which
requires further study. Future studies can refine and replace the classification model within
this framework to enhance its overall effectiveness. Also, the FDG PET images utilized
in this study were not subjected to partial volume correction (PVC) due to the absence
of corresponding MRI images for some subjects. The integration of the morphometries
from MRI and glucose metabolism from FDG PET images in any future study may further
enhance the imaging-based biomarkers. Finally, we employed the handcrafted radiomics
features to explain the DL latent features. We have only provided a basic physiological
explanation for these radiomics features for FDG PET images. Offering a comprehensive
physiological explanation for mathematically defined radiomic features reflecting glucose
metabolism across different brain regions presents a significant challenge.
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5. Conclusions

In this study, we investigated the radiomics-guided DL model to extract interpretable
DL features from FDG PET images and further verify the proposed model through the dif-
ferential diagnosis of Parkinsonian syndromes. The DL latent features were evaluated with
the multinomial LR model, demonstrating that this approach outperformed the baseline
radiomics approach. And the retained DL latent features were significantly associated with
radiomics features and could be interpreted through biological explanations of handcrafted
radiomics features. Hence, the radiomics-guided DL model offers novel high-level abstract
information for the differential diagnosis of Parkinsonian disorders and holds considerable
promise for personalized disease monitoring.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/brainsci14070680/s1: Table S1: The descriptions of all 107 radiomics
features. Table S2: The classification performance of the radiomics model for the differential diagnosis
of Parkinsonian disorders. Table S3: The classification performance of the initial ResNet and Dense
network model for the differential diagnosis of Parkinsonian disorders.
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covariance patterns associated with multiple system atrophy and progressive supranuclear palsy. Phys. Med. 2022, 98, 131–138.
[CrossRef] [PubMed]

45. Seckin, Z.I.; Duffy, J.R.; Strand, E.A.; Clark, H.M.; Utianski, R.L.; Machulda, M.M.; Botha, H.; Ali, F.; Thu Pham, N.T.; Lowe, V.J.;
et al. The evolution of parkinsonism in primary progressive apraxia of speech: A 6-year longitudinal study. Park. Relat. Disord.
2020, 81, 34–40. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/mds.26424
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1016/j.neuroimage.2019.116189
https://doi.org/10.1006/nimg.2001.0978
https://www.ncbi.nlm.nih.gov/pubmed/11771995
https://doi.org/10.1007/s11548-014-1068-y
https://doi.org/10.1016/j.cmpb.2023.107660
https://doi.org/10.1016/j.media.2023.102917
https://www.ncbi.nlm.nih.gov/pubmed/37598607
https://doi.org/10.1016/j.mri.2022.01.016
https://www.ncbi.nlm.nih.gov/pubmed/35122983
https://doi.org/10.1038/s42003-021-02814-7
https://doi.org/10.1093/brain/awf080
https://doi.org/10.1212/01.WNL.0000073986.74883.36
https://doi.org/10.1016/S0720-048X(03)00214-6
https://doi.org/10.3389/fneur.2021.652059
https://doi.org/10.3233/JPD-202524
https://www.ncbi.nlm.nih.gov/pubmed/34024780
https://doi.org/10.1007/s00415-024-12350-z
https://doi.org/10.1002/mds.28217
https://doi.org/10.1016/j.ejmp.2022.04.016
https://www.ncbi.nlm.nih.gov/pubmed/35537328
https://doi.org/10.1016/j.parkreldis.2020.09.039
https://www.ncbi.nlm.nih.gov/pubmed/33045651

	1
	Materials and Methods 
	Participants 
	PET Acquisition and Preprocessing 
	Baseline Radiomics Analysis 
	Radiomics-Guided DL Model 
	Statistics Analysis 

	Results 
	Demographics 
	Baseline Radiomics Model 
	Radiomics-Guided DL Model 
	Interpretation of the DL Features with Radiomics 

	Discussion 
	Conclusions 
	References

