34 research outputs found

    Expression of interleukin-17RC protein in normal human tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interleukin-17 (IL-17) cytokines and receptors play an important role in many autoimmune and inflammatory diseases. IL-17 receptors IL-17RA and IL-17RC have been found to form a heterodimer for mediating the signals of IL-17A and IL-17F cytokines. While the function and signaling pathway of IL-17RA has been revealed, IL-17RC has not been well characterized. The function and signaling pathway of IL-17RC remain largely unknown. The purpose of the present study was to systematically examine IL-17RC protein expression in 53 human tissues.</p> <p>Results</p> <p>IL-17RC expression in 51 normal human tissues and two benign tumors (i.e., lymphangioma and parathyroid adenoma) on the tissue microarrays was determined by immunohistochemical staining, using two polyclonal antibodies against IL-17RC. IL-17RC protein was expressed in many cell types including the myocardial cells, vascular and lymphatic endothelial cells, glandular cells (of the adrenal, parathyroid, pituitary, thyroid, pancreas, parotid salivary, and subepidermal glands), epithelial cells (of the esophagus, stomach, intestine, anus, renal tubule, breast, cervix, Fallopian tube, epididymis, seminal vesicle, prostate, gallbladder, bronchus, lung, and skin), oocytes in the ovary, Sertoli cells in the testis, motor neurons in the spinal cord, autonomic ganglia and nerves in the intestine, skeletal muscle cells, adipocytes, articular chondrocytes, and synovial cells. High levels of IL-17RC protein expression were observed in most vascular and lymphatic endothelium and squamous epithelium. The epithelium of the breast, cervix, Fallopian tube, kidney, bladder and bronchus also expressed high levels of IL-17RC, so did the glandular cells in the adrenal cortex, parotid salivary and subepidermal glands. In contrast, IL-17RC protein was not detectable in the smooth muscle cells, fibroblasts, antral mucosa of the stomach, mucosa of the colon, endometrium of the uterus, neurons of the brain, hepatocytes, or lymphocytes. Nevertheless, IL-17RC protein was expressed in the vascular endothelium within the tissues where the IL-17RC-negative cells resided.</p> <p>Conclusion</p> <p>IL-17RC protein is expressed in most human tissues, the function of which warrants further investigation.</p

    Insulin and IGF1 enhance IL-17-induced chemokine expression through a GSK3B-dependent mechanism: a new target for melatonin\u27s anti-inflammatory action.

    Get PDF
    Obesity is a chronic inflammation with increased serum levels of insulin, insulin-like growth factor 1 (IGF1), and interleukin-17 (IL-17). The objective of this study was to test a hypothesis that insulin and IGF1 enhance IL-17-induced expression of inflammatory chemokines/cytokines through a glycogen synthase kinase 3β (GSK3B)-dependent mechanism, which can be inhibited by melatonin. We found that insulin/IGF1 and lithium chloride enhanced IL-17-induced expression of C-X-C motif ligand 1 (Cxcl1) and C-C motif ligand 20 (Ccl20) in the Gsk3b(+/+) , but not in Gsk3b(-/-) mouse embryonic fibroblast (MEF) cells. IL-17 induced higher levels of Cxcl1 and Ccl20 in the Gsk3b(-/-) MEF cells, compared with the Gsk3b(+/+) MEF cells. Insulin and IGF1 activated Akt to phosphorylate GSK3B at serine 9, thus inhibiting GSK3B activity. Melatonin inhibited Akt activation, thus decreasing P-GSK3B at serine 9 (i.e., increasing GSK3B activity) and subsequently inhibiting expression of Cxcl1 and Ccl20 that was induced either by IL-17 alone or by a combination of insulin and IL-17. Melatonin\u27s inhibitory effects were only observed in the Gsk3b(+/+) , but in not Gsk3b(-/-) MEF cells. Melatonin also inhibited expression of Cxcl1, Ccl20, and Il-6 that was induced by a combination of insulin and IL-17 in the mouse prostatic tissues. Further, nighttime human blood, which contained high physiologic levels of melatonin, decreased expression of Cxcl1, Ccl20, and Il-6 in the PC3 human prostate cancer xenograft tumors. Our data support our hypothesis and suggest that melatonin may be used to dampen IL-17-mediated inflammation that is enhanced by the increased levels of insulin and IGF1 in obesity

    Vitamin D and cause-specific vascular disease and mortality:a Mendelian randomisation study involving 99,012 Chinese and 106,911 European adults

    Get PDF

    Doublecortin May Play a Role in Defining Chondrocyte Phenotype

    No full text
    Embryonic development of articular cartilage has not been well understood and the role of doublecortin (DCX) in determination of chondrocyte phenotype is unknown. Here, we use a DCX promoter-driven eGFP reporter mouse model to study the dynamic gene expression profiles in mouse embryonic handplates at E12.5 to E13.5 when the condensed mesenchymal cells differentiate into either endochondral chondrocytes or joint interzone cells. Illumina microarray analysis identified a variety of genes that were expressed differentially in the different regions of mouse handplate. The unique expression patterns of many genes were revealed. Cytl1 and 3110032G18RIK were highly expressed in the proximal region of E12.5 handplate and the carpal region of E13.5 handplate, whereas Olfr538, Kctd15, and Cited1 were highly expressed in the distal region of E12.5 and the metacarpal region of E13.5 handplates. There was an increasing gradient of Hrc expression in the proximal to distal direction in E13.5 handplate. Furthermore, when human DCX protein was expressed in human adipose stem cells, collagen II was decreased while aggrecan, matrilin 2, and GDF5 were increased during the 14-day pellet culture. These findings suggest that DCX may play a role in defining chondrocyte phenotype

    Microscopic insight into role of protein flexibility during ion exchange chromatography by nuclear magnetic resonance and quartz crystal microbalance approaches

    No full text
    Driven by the prevalent use of ion exchange chromatography (IEC) for polishing therapeutic proteins, many rules have been formulated to summarize the different dependencies between chromatographic data and various operational parameters of interest based on statically determined interactions. However, the effects of the unfolding of protein structures and conformational stability are not as well understood. This study focuses on how the flexibility of proteins perturbs retention behavior at the molecular scale using microscopic characterization approaches, including hydrogen-deuterium (H/D) exchange detected by NMR and a quartz crystal microbalance (QCM). The results showed that a series of chromatographic retention parameters depended significantly on the adiabatic compressibility and structural flexibility of the protein. That is, softer proteins with higher flexibility tended to have longer retention times and stronger affinities on SP Sepharose adsorbents. Tracing the underlying molecular mechanism using NMR and QCM indicated that an easily unfolded flexible protein with a more compact adsorption layer might contribute to the longer retention time on adsorbents. The use of NMR and QCM provided a previously unreported approach for elucidating the effect of protein structural flexibility on binding in IEC systems. (C) 2016 Published by Elsevier B.V

    Near-Zero Thermal Expansion and Phase Transitions in HfMg1−xZnxMo3O12

    No full text
    The effects of Zn2+ incorporation on the phase formation, thermal expansion, phase transition, and vibrational properties of HfMg1−xZnxMo3O12 are investigated by XRD, dilatometry, and Raman spectroscopy. The results show that (i) single phase formation is only possible for x ≤ 0.5, otherwise, additional phases of HfMo2O8 and ZnMoO4 appear; (ii) The phase transition temperature from monoclinic to orthorhombic structure of the single phase HfMg1−xZnxMo3O12 can be well-tailored, which increases with the content of Zn2+; (iii) The incorporation of Zn2+ leads to an pronounced reduction in the positive expansion of the b-axis and an enhanced negative thermal expansion (NTE) in the c-axes, leading to a near-zero thermal expansion (ZTE) property with lower anisotropy over a wide temperature range; (iv) Replacement of Mg2+ by Zn2+ weakens the Mo–O bonds as revealed by obvious red shifts of all the Mo–O stretching modes with increasing the content of Zn2+ and improves the sintering performance of the samples which is observed by SEM. The mechanisms of the negative and near-ZTE are discussed

    Defect of IL17 Signaling, but Not Centrinone, Inhibits the Development of Psoriasis and Skin Papilloma in Mouse Models

    No full text
    Patients with psoriasis tend to develop skin cancer, and the hyperproliferation of the epidermis is a histopathological hallmark of both psoriasis and cutaneous squamous cell carcinoma (SCC), indicating that they may share pathogenic mechanisms. Interleukin-17 (IL17) stimulates the proliferation of the epidermis, leading to psoriasis. Overexpression of Polo-like kinase 4 (PLK4), which controls centriole duplication, has been identified in SCC, which also shows the hyperproliferation of keratinocytes. To investigate the cooperation between IL17 signaling and centriole duplication in epidermal proliferation, we established psoriasis and skin papilloma models in wild type (WT), IL17 receptor A (T779A) knockin (Il17ra(T779A)-KI), and IL17 receptor C knockout (Il17rc-KO) mouse strains. Bioinformatics, Western blot, immunohistochemical staining, colony formation, and real-time PCR were used to determine the effect of IL17 signaling and centrinone on epithelial proliferation. In the psoriasis model, compared to WT and Il17ra(T779A)-KI, Il17rc-KO dramatically suppressed epidermal thickening. The proliferation of keratinocytes significantly decreased in this order from WT to Il17ra(T779A)-KI and Il17rc-KO mice. In the skin papilloma model, Il17ra(T779A)-KI significantly decreased tumor burden compared to the WT, while Il17rc-KO abolished papilloma development. However, centrinone, a selective inhibitor of PLK4, did not affect skin lesion formation in either model. Our data demonstrated that Il17ra(T779A)-KI and Il17rc-KO prevent the development of psoriasis and tumorigenesis in the skin, while the topical administration of centrinone does not have any effect
    corecore