39 research outputs found

    Violating Bell Inequalities Maximally for Two dd-Dimensional Systems

    Full text link
    We investigate the maximal violation of Bell inequalities for two dd-dimensional systems by using the method of Bell operator. The maximal violation corresponds to the maximal eigenvalue of the Bell operator matrix. The eigenvectors corresponding to these eigenvalues are described by asymmetric entangled states. We estimate the maximum value of the eigenvalue for large dimension. A family of elegant entangled states Ψ>app|\Psi>_{\rm app} that violate Bell inequality more strongly than the maximally entangled state but are somewhat close to these eigenvectors is presented. These approximate states can potentially be useful for quantum cryptography as well as many other important fields of quantum information.Comment: 6 pages, 1 figure. Revised versio

    External modulation method for generating accurate linear optical FMCW

    Get PDF
    Frequency modulation continuous wave (FMCW) lasers are key components in modern optical imaging. However, current intracavity modulation lasers do not exhibit low-frequency jitter rate and high linearity due to the inherent relaxation oscillations. Although this may be compensated in a direct modulation laser diode using an optoelectronic feedback loop, the available sweep speed is moderately small. In this letter, a special external modulation method is developed to improve the performance of FMCW. Since only the first sideband optical field is used during the entire generation process, phase noise is kept to a minimum and is also independent of the sweep speed. We demonstrate that the linearity and jitter rates do not deteriorate appreciably when the sweep speed is changed over three orders of magnitude, even up to the highest sweep speed of 2.5 GHz/ μs

    The effects of yam gruel on lowering fasted blood glucose in T2DM rats

    Get PDF
    © 2020 Xinjun Lin et al., published by De Gruyter 2020. There is increasing evidence of the linkage between type 2 diabetes mellitus (T2DM) and gut microbiota. Based on our previous studies, we investigated the hypoglycemic mechanisms of yam gruel to provide a scientific basis for its popularization and application. Wistar rats were randomly divided into control and T2DM model groups. Rats in the model group were stimulated by a high-sugar/high-fat diet combined with an intraperitoneal injection of streptozotocin to induce T2DM. The T2DM rats were further subdivided randomly into three groups: (1) DM, (2) DM + yam gruel, and (3) DM + metformin. After 4 weeks of intervention, the changes in gut microbiota, short-chain fatty acids (SCFAs) (acetic acid, propionic acid, and butyric acid), the expression of G protein-coupled receptor 43 (GPR43), glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and fasted blood glucose (FBG) levels were observed. Yam gruel intervention elevated the abundance of probiotic bacteria and increased the expression of SCFAs, GPR43 receptor, GLP-1, and PYY. It also reduced FBG levels. We conclude that yam gruel can lower FBG by promoting the growth of probiotic bacteria, increasing the content of SCFAs, and enhancing the expression of GPR43 receptor to increase the content of GLP-1 and PYY in serum

    Effects of Dioscorea polystachya \u27yam gruel\u27 on the cognitive function of diabetic rats with focal cerebral ischemia-reperfusion injury via the gut-brain axis

    Get PDF
    © 2020 Pang et al. Published by IMR press. Focal cerebral ischemia-reperfusion injury is closely related to hyperglycemia and gut microbiota imbalance, while gut microbiota contributes to the regulation of brain function through the gut-brain axis. Previous studies in patients with diabetes have found that \u27yam gruel\u27 is a classic medicated diet made from Dioscorea polystachya, increases the content of Bifidobacterium, regulates oxidative stress, and reduces fasting blood glucose levels. The research reported here investigated the effects of \u27yam gruel\u27 on the cognitive function of streptozotocin-induced diabetic rats with focal cerebral ischemia-reperfusion injury and explored the mechanism underlying the role of the gut-brain axis in this process. \u27Yam gruel\u27 was shown to improve cognitive function as indicated by increased relative content of probiotic bacteria, and short-chain fatty acids in the intestinal tract and cerebral cortex reduced oxidative stress and inflammatory response and promotion of the expression of neurotransmitters and brain-derived neurotrophic factor. Thus, it is concluded that \u27yam gruel\u27 has a protective effect on cognitive function via a mechanism related to the gut-brain axis

    Nutritional analysis of red-purple and white-fleshed pitaya (hylocereus) species

    Get PDF
    Pitaya is one of the most preferred and produced tropical fruit species recently introduced to the Mediterrranean region in Turkey. Due to its nutritional fruits with high economic value, the popularity of pitaya increases steadily in Turkey as an alternative crop. No detailed nutritional analysis has been undertaken in Turkey so far on fruits of the pitaya species. In this study, we determined and compared some nutritional parameters in fruit flesh of two pitaya (dragon fruit) species (Hylocereus polyrhizus: Siyam and Hylocereus undatus: Vietnam Jaina) grown in the Adana province located in the eastern Mediterranean region in Turkey. The individual sugars, antioxidant activity, total phenolic content, phenolic compounds and volatiles were determined for the first time in Turkey on two pitaya species. The results showed that total phenol content and antioxidant capacity are notably higher in red-fleshed fruits than white-fleshed ones and the predominant phenolic compound in fruits of both species was quercetin. The total sugar content and most of the phenolic compounds in fruits of two pitaya species were similar. A total of 51 volatile compounds were detected by using two Solid Phase Micro Extraction (SPME) fibers, coupled with Gas Chromatography Mass Spectrometry (GC-MS) techniques, and more volatile compounds were presented in the white-fleshed species. Total phenolic content (TPC) of the red-fleshed and white-fleshed pitaya species were 16.66 and 17.11 mg GAE/100 g FW (fresh weight). This study provides a first look at the biochemical comparison of red-fleshed and white-fleshed pitaya species introduced and cultivated in Turkey. The results also showed, for the first time, the biochemical content and the potential health benefit of Hylocereus grown in different agroecological conditions, providing important information for pitaya researchers and application perspective. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.FBA-2019-11325; IGA/FT/2022/004Cukurova University Scientific Research Projects (Turkey) [FBA-2019-11325]Cukurova University Scientific Research Projects (Turkey) [FBA-2019-11325

    Atypical radio pulsations from magnetar SGR 1935+2154

    Full text link
    Magnetars are neutron stars with extremely strong magnetic fields, frequently powering high-energy activity in X-rays. Pulsed radio emission following some X-ray outbursts have been detected, albeit its physical origin is unclear. It has long been speculated that the origin of magnetars' radio signals is different from those from canonical pulsars, although convincing evidence is still lacking. Five months after magnetar SGR 1935+2154's X-ray outburst and its associated Fast Radio Burst (FRB) 20200428, a radio pulsar phase was discovered. Here we report the discovery of X-ray spectral hardening associated with the emergence of periodic radio pulsations from SGR 1935+2154 and a detailed analysis of the properties of the radio pulses. The complex radio pulse morphology, which contains both narrow-band emission and frequency drifts, has not been seen before in other magnetars, but is similar to those of repeating FRBs - even though the luminosities are many orders of magnitude different. The observations suggest that radio emission originates from the outer magnetosphere of the magnetar, and the surface heating due to the bombardment of inward-going particles from the radio emission region is responsible for the observed X-ray spectral hardening.Comment: 47 pages, 11 figure

    Amplification and spontaneous emission of Er-doped fiber both in theory and experiment

    No full text
    We took a step forward on the basis of existing deduction, the formula of net gain coefficient of amplification of spontaneous emission of Er-doped fiber was given. Based on the data, which were provided by the reference, we calculated the net gain coefficients for different fiber length pumped at different pump power. Then theoretical curves were drawn. ASE spectra obtained experimentally were in excellent qualitative agreement with the ones obtained from theory. At last, the calculated optimal fiber lengths were given according to several common used wavelengths at the same pump power

    A Novel Method of Measuring Instantaneous Frequency of an Ultrafast Frequency Modulated Continuous-Wave Laser

    No full text
    Ultrafast linear frequency modulated continuous-wave (FMCW) lasers are a special category of CW lasers. The linear FMCW laser is the light source for many sensing applications, especially for light detection and ranging (LiDAR). However, systems for the generation of high quality linear FMCW light are limited and diverse in terms of technical approaches and mechanisms. Due to a lack of characterization methods for linear FMCW lasers, it is difficult to compare and judge the generation systems in the same category. We propose a novel scheme for measuring the mapping relationship between instantaneous frequency and time of a FMCW laser based on a modified coherent optical spectrum analyzer (COSA) and digital signal processing (DSP) method. Our method has the potential to measure the instantaneous frequency of a FMCW laser at an unlimited sweep rate. In this paper, we demonstrate how to use this new method to precisely measure a FMCW laser at a large fast sweep rate of 5000 THz/s by both simulation and experiments. We find experimentally that the uncertainty of this method is less than 100 kHz and can be improved further if a frequency feedback servo system is introduced to stabilize the local CW laser
    corecore