24 research outputs found

    Qwen Technical Report

    Full text link
    Large language models (LLMs) have revolutionized the field of artificial intelligence, enabling natural language processing tasks that were previously thought to be exclusive to humans. In this work, we introduce Qwen, the first installment of our large language model series. Qwen is a comprehensive language model series that encompasses distinct models with varying parameter counts. It includes Qwen, the base pretrained language models, and Qwen-Chat, the chat models finetuned with human alignment techniques. The base language models consistently demonstrate superior performance across a multitude of downstream tasks, and the chat models, particularly those trained using Reinforcement Learning from Human Feedback (RLHF), are highly competitive. The chat models possess advanced tool-use and planning capabilities for creating agent applications, showcasing impressive performance even when compared to bigger models on complex tasks like utilizing a code interpreter. Furthermore, we have developed coding-specialized models, Code-Qwen and Code-Qwen-Chat, as well as mathematics-focused models, Math-Qwen-Chat, which are built upon base language models. These models demonstrate significantly improved performance in comparison with open-source models, and slightly fall behind the proprietary models.Comment: 59 pages, 5 figure

    Control of occlusion of middle cerebral artery in perinatal and neonatal mice with magnetic force

    No full text
    Abstract Ischemic perinatal stroke (IPS) is common, resulting in significant mortality and morbidity. In such cases, the incidence of unilateral arterial cerebral infarction is often occluded in the middle cerebral artery (MCA), leading to focal ischemia. In adult rodents, blockage of MCA is the most frequently used strategy for ischemic stroke study. However, modeling MCA occlusion (MCAo) in postnatal day 0–7 (P0–7) mouse pups for IPS study has not been accomplished. Here we occluded the dMCA by inducing the accumulation of magnetic particles (MPs) administered through the superficial temporal vein of mice between P0 and P7, which we called neonatal or perinatal SIMPLE (Stroke Induced with Magnetic Particles). SIMPLE produced either permanent or transient occlusion in the dMCA of perinatal and neonatal mice. Permanent MCA occlusion with SIMPLE resulted in cerebral infarction and neuronal death in the brain. SIMPLE can also be used to reliably produce focal ischemic stroke in neonatal or perinatal mouse brains. As a result, SIMPLE allows the modeling of IPS or focal ischemic stroke for further mechanistic studies in mice, with particular utility for mimicking transient focal ischemia in human pre-term babies, which for the first time here has been accomplished in mice

    溶液和熔化状态下分子间的能量传递

    No full text
    通过二维红外光谱研究了GdmSCN/KSCN=1/1,GdmSCN/KS^13CN=1/1和GdmSCN/KS^13C^15N=1/1三种混合晶体在熔融和溶液状态下的共振和非共振的分子间振动能量传递的性质.在这些样品中,给体/受体的能量差越大,能量传递越慢.而能量传递的快慢与拉曼光谱无关.非共振能量传递与给体/受体的能量差的关系不能用声子补偿的机理来描述.相反,它们的关系却可以用退相位机理来定量描述.在熔融状态下,共振和非共振能量速率与温度的依赖关系也与退相位机理的预测相符合.这一系列的结果表明只要分子的运动(平动和转动)远远快于非共振能量传递速率,那么退相位机理不仅在溶液中占主导,而且在熔融状态下(纯液体,不含溶剂)也占主导

    溶液和熔化状态下分子间的能量传递

    No full text
    通过二维红外光谱研究了GdmSCN/KSCN=1/1,GdmSCN/KS^13CN=1/1和GdmSCN/KS^13C^15N=1/1三种混合晶体在熔融和溶液状态下的共振和非共振的分子间振动能量传递的性质.在这些样品中,给体/受体的能量差越大,能量传递越慢.而能量传递的快慢与拉曼光谱无关.非共振能量传递与给体/受体的能量差的关系不能用声子补偿的机理来描述.相反,它们的关系却可以用退相位机理来定量描述.在熔融状态下,共振和非共振能量速率与温度的依赖关系也与退相位机理的预测相符合.这一系列的结果表明只要分子的运动(平动和转动)远远快于非共振能量传递速率,那么退相位机理不仅在溶液中占主导,而且在熔融状态下(纯液体,不含溶剂)也占主导

    Multi-Omics Revealing the Response Patterns of Symbiotic Microorganisms and Host Metabolism in Scleractinian Coral <i>Pavona minuta</i> to Temperature Stresses

    No full text
    Global climate change has resulted in large-scale coral reef decline worldwide, for which the ocean warming has paid more attention. Coral is a typical mutually beneficial symbiotic organism with diverse symbiotic microorganisms, which maintain the stability of physiological functions. This study compared the responses of symbiotic microorganisms and host metabolism in a common coral species, Pavona minuta, under indoor simulated thermal and cold temperatures. The results showed that abnormal temperature stresses had unfavorable impact on the phenotypes of corals, resulting in bleaching and color change. The compositions of symbiotic bacteria and dinoflagellate communities only presented tiny changes under temperature stresses. However, some rare symbiotic members have been showed to be significantly influenced by water temperatures. Finally, by using ultra-performance liquid chromatography tandem mass spectrometry (UPLC–MS) method, we found that different temperature stresses had very different impacts on the metabolism of coral holobiont. The thermal and cold stresses induced the decrease of anti-oxidation metabolites, several monogalactosyldiacylglycerols (MGDGs), and the increase of lipotoxic metabolite, 10-oxo-nonadecanoic acid, in the coral holobiont, respectively. Our study indicated the response patterns of symbiotic microorganisms and host metabolism in coral to the thermal and cold stresses, providing theoretical data for the adaptation and evolution of coral to a different climate in the future

    Cross-Linked Regulation of Coral-Associated Dinoflagellates and Bacteria in Pocillopora sp. during High-Temperature Stress and Recovery

    No full text
    As the problem of ocean warming worsens, the environmental adaptation potential of symbiotic Symbiodiniaceae and bacteria is directly related to the future and fate of corals. This study aimed to analyse the comprehensive community dynamics and physiology of these two groups of organisms in the coral Pocillopora sp. through indoor simulations of heat stress (which involved manually adjusting the temperature between both 26 °C and 34 °C). Heat treatment (≥30 °C) significantly reduced the abundance of Symbiodiniaceae and bacteria by more than 70%. After the temperature was returned to 26 °C for one month, the Symbiodiniaceae density was still low, while the absolute number of bacteria quickly recovered to 55% of that of the control. At this time point, the Fv/Fm value rose to 91% of the pretemperature value. The content of chlorophyll b associated with Cyanobacteria increased by 50% compared with that under the control conditions. Moreover, analysis of the Symbiodiniaceae subclade composition suggested that the relative abundance of C1c.C45, C1, and C1ca increased during heat treatment, indicating that they might constitute heat-resistant subgroups. We suggest that the increase in the absolute number of bacteria during the recovery period could be an important indicator of coral holobiont recovery after heat stress. This study provides insight into the cross-linked regulation of key symbiotic microbes in the coral Pocillopora sp. during high-temperature stress and recovery and provides a scientific basis for exploring the mechanism underlying coral adaptation to global warming

    Negligible Isotopic Effect on Dissociation of Hydrogen Bonds

    No full text
    Isotopic effects on the formation and dissociation kinetics of hydrogen bonds are studied in real time with ultrafast chemical exchange spectroscopy. The dissociation time of hydrogen bond between phenol-OH and <i>p</i>-xylene (or mesitylene) is found to be identical to that between phenol-OD and <i>p</i>-xylene (or mesitylene) in the same solvents. The experimental results demonstrate that the isotope substitution (D for H) has negligible effects on the hydrogen bond kinetics. DFT calculations show that the isotope substitution does not significantly change the frequencies of vibrational modes that may be along the hydrogen bond formation and dissociation coordinate. The zero point energy differences of these modes between hydrogen bonds with OH and OD are too small to affect the activation energy of the hydrogen bond dissociation in a detectible way at room temperature

    Characterizing the Moisture Content of Tea with Diffuse Reflectance Spectroscopy Using Wavelet Transform and Multivariate Analysis

    No full text
    Effects of the moisture content (MC) of tea on diffuse reflectance spectroscopy were investigated by integrated wavelet transform and multivariate analysis. A total of 738 representative samples, including fresh tea leaves, manufactured tea and partially processed tea were collected for spectral measurement in the 325–1,075 nm range with a field portable spectroradiometer. Then wavelet transform (WT) and multivariate analysis were adopted for quantitative determination of the relationship between MC and spectral data. Three feature extraction methods including WT, principal component analysis (PCA) and kernel principal component analysis (KPCA) were used to explore the internal structure of spectral data. Comparison of those three methods indicated that the variables generated by WT could efficiently discover structural information of spectral data. Calibration involving seeking the relationship between MC and spectral data was executed by using regression analysis, including partial least squares regression, multiple linear regression and least square support vector machine. Results showed that there was a significant correlation between MC and spectral data (&lt;em&gt;r&lt;/em&gt; = 0.991, RMSEP = 0.034). Moreover, the effective wavelengths for MC measurement were detected at range of 888–1,007 nm by wavelet transform. The results indicated that the diffuse reflectance spectroscopy of tea is highly correlated with MC

    Comparison Studies on Sub-Nanometer-Sized Ion Clusters in Aqueous Solutions: Vibrational Energy Transfers, MD Simulations, and Neutron Scattering

    No full text
    In this work, MD simulations with two different force fields, vibrational energy relaxation and resonant energy transfer experiments, and neutron scattering data are used to investigate ion pairing and clustering in a series of GdmSCN aqueous solutions. The MD simulations reproduce the major features of neutron scattering experimental data very well. Although no information about ion pairing or clustering can be obtained from the neutron scattering data, MD calculations clearly demonstrate that substantial amounts of ion pairs and small ion clusters (subnanometers to a few nanometers) do exist in the solutions of concentrations 0.5 M*, 3 M*, and 5 M* (M* denotes mole of GdmSCN per. 55.55 mole of water). Vibrational relaxation experiments suggest that significant amounts of ion pairs form in the solutions. Experiments measuring the resonant energy transfers among the thiocyanate anions in the solutions suggest that the ions form clusters and in the clusters the average anion distance is 5.6 angstrom (5.4 angstrom) in the 3 M* (5 M*) Gdm(-D)SCN/D2O solution
    corecore