1,447 research outputs found

    PT-symmetry breaking and laser-absorber modes in optical scattering systems

    Full text link
    Using a scattering matrix formalism, we derive the general scattering properties of optical structures that are symmetric under a combination of parity and time-reversal (PT). We demonstrate the existence of a transition beween PT-symmetric scattering eigenstates, which are norm-preserving, and symmetry-broken pairs of eigenstates exhibiting net amplification and loss. The system proposed by Longhi, which can act simultaneously as a laser and coherent perfect absorber, occurs at discrete points in the broken symmetry phase, when a pole and zero of the S-matrix coincide.Comment: 4 pages, 4 figure

    Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures

    Full text link
    We analyze the optical properties of one-dimensional (1D) PT-symmetric structures of arbitrary complexity. These structures violate normal unitarity (photon flux conservation) but are shown to satisfy generalized unitarity relations, which relate the elements of the scattering matrix and lead to a conservation relation in terms of the transmittance and (left and right) reflectances. One implication of this relation is that there exist anisotropic transmission resonances in PT-symmetric systems, frequencies at which there is unit transmission and zero reflection, but only for waves incident from a single side. The spatial profile of these transmission resonances is symmetric, and they can occur even at PT-symmetry breaking points. The general conservation relations can be utilized as an experimental signature of the presence of PT-symmetry and of PT-symmetry breaking transitions. The uniqueness of PT-symmetry breaking transitions of the scattering matrix is briefly discussed by comparing to the corresponding non-Hermitian Hamiltonians.Comment: 10 pages, 10 figure

    Coherent Perfect Absorbers: Time-reversed Lasers

    Full text link
    We show that an arbitrary body or aggregate can be made perfectly absorbing at discrete frequencies if a precise amount of dissipation is added under specific conditions of coherent monochromatic illumination. This effect arises from the interaction of optical absorption and wave interference, and corresponds to moving a zero of the elastic S-matrix onto the real wavevector axis. It is thus the time-reversed process of lasing at threshold. The effect is demonstrated in a simple Si slab geometry illuminated in the 500-900 nm range. Coherent perfect absorbers are novel linear optical elements, absorptive interferometers, which may be useful for controlled optical energy transfer.Comment: 4 pages, 4 figure

    Can winds driven by active galactic nuclei account for the extragalactic gamma-ray and neutrino backgrounds?

    Full text link
    Various observations are revealing the widespread occurrence of fast and powerful winds in active galactic nuclei (AGNs) that are distinct from relativistic jets, likely launched from accretion disks and interacting strongly with the gas of their host galaxies. During the interaction, strong shocks are expected to form that can accelerate non-thermal particles to high energies. Such winds have been suggested to be responsible for a large fraction of the observed extragalactic gamma-ray background (EGB) in the GeV-TeV range and the diffuse neutrino background in the PeV range, via the decay of neutral and charged pions generated in inelastic pppp collisions between protons accelerated by the forward shock and the ambient gas. However, previous studies did not properly account for processes such as adiabatic losses that may reduce the gamma-ray and neutrino fluxes significantly. We evaluate the production of gamma-rays and neutrinos by AGN-driven winds in some detail by modeling their hydrodynamic and thermal evolution, including the effects of their two-temperature structure. We find that they can only account for less than ∼30\sim 30% of the EGB flux, as otherwise the model would violate the independent upper limit derived from the diffuse isotropic gamma-ray background. If the neutrino spectral index is steep with Γ≳2.2\Gamma\gtrsim 2.2, a severe tension with the isotropic gamma-ray background would arise as long as the winds contribute more than 2020% of the IceCube neutrino flux in the 10−10010-100TeV range. Nevertheless, at energies ≳100\gtrsim100~TeV, we find that the IceCube neutrino flux may still be accountable by AGN-driven winds if the spectral index is as small as Γ∼2.0−2.1\Gamma\sim2.0-2.1. The detectability of gamma-ray point sources also provides important constraints on such scenarios.Comment: 17 pages, 10 figures, to appear in Ap

    Steady-State Ab Initio Laser Theory for N-level Lasers

    Full text link
    We show that Steady-state Ab initio Laser Theory (SALT) can be applied to find the stationary multimode lasing properties of an N-level laser. This is achieved by mapping the N-level rate equations to an effective two-level model of the type solved by the SALT algorithm. This mapping yields excellent agreement with more computationally demanding N-level time domain solutions for the steady state
    • …
    corecore