237 research outputs found

    Best Management Practice Effects for Phosphorus Control on a Dairy Farm: The Cannonsville Reservoir Watershed, New York

    Get PDF
    Abstract. Best Management Practices (BMPs) have been implemented on a farm-by-farm basis within the Cannonsville Reservoir Watershed (CRW), as part of a New York City watershed-wide BMP implementation effort to reduce phosphorus total P). For dissolved P, integration of BMP tool efficiencies allowed individual The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the official position of the American Society of Agricultural Engineers (ASAE), and its printing and distribution does not constitute an endorsement of views which may be expressed. Technical presentations are not subject to the formal peer review process by ASAE editorial committees; therefore, they are not to be presented as refereed publications. Citation of this work should state that it is from an ASAE meeting paper. EXAMPLE: Author's Last Name, Initials

    Latest results from the PHOBOS experiment

    Full text link
    Over the past years PHOBOS has continued to analyze the large datasets obtained from the first five runs of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The two main analysis streams have been pursued. The first one aims to obtain a broad and systematic survey of global properties of particle production in heavy ion collisions. The second class includes the study of fluctuations and correlations in particle production. Both type of studies have been performed for a variety of the collision systems, covering a wide range in collision energy and centrality. The uniquely large angular coverage of the PHOBOS detector and its ability to measure charged particles down to very low transverse momentum is exploited. The latest physics results from PHOBOS, as presented at Quark Matter 2008 Conference, are contained in this report.Comment: 9 pages, 9 figures, presented at the 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, "Quark Matter 2008", Jaipur, India, Feb.4-10, 200

    Sphinx measurements of the 2009 solar minimum x-ray emission

    Get PDF
    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 x 10^47 cm^-3 and 1.1 x 10^48 cm^-3. Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.Comment: Astrophysical Journal, in press. 14 pp, 3 figure

    X-raying hot plasma in solar active regions with the SphinX spectrometer

    Full text link
    The detection of very hot plasma in the quiescent corona is important for diagnosing heating mechanisms. The presence and the amount of such hot plasma is currently debated. The SphinX instrument on-board CORONAS-PHOTON mission is sensitive to X-ray emission well above 1 keV and provides the opportunity to detect the hot plasma component. We analyzed the X-ray spectra of the solar corona collected by the SphinX spectrometer in May 2009 (when two active regions were present). We modelled the spectrum extracted from the whole Sun over a time window of 17 days in the 1.34-7 keV energy band by adopting the latest release of the APED database. The SphinX broadband spectrum cannot be modelled by a single isothermal component of optically thin plasma and two components are necessary. In particular, the high statistics and the accurate calibration of the spectrometer allowed us to detect a very hot component at ~7 million K with an emission measure of ~2.7 x 10^44 cm^-3. The X-ray emission from the hot plasma dominates the solar X-ray spectrum above 4 keV. We checked that this hot component is invariably present both at high and low emission regimes, i.e. even excluding resolvable microflares. We also present and discuss a possible non-thermal origin (compatible with a weak contribution from thick-target bremsstrahlung) for this hard emission component. Our results support the nanoflare scenario and might confirm that a minor flaring activity is ever-present in the quiescent corona, as also inferred for the coronae of other stars.Comment: 6 pages, 5 figures. Accepted for publication in A&

    SPIRITS 15c and SPIRITS 14buu: Two Obscured Supernovae in the Nearby Star-Forming Galaxy IC 2163

    Get PDF
    SPIRITS---SPitzer InfraRed Intensive Transients Survey---is an ongoing survey of nearby galaxies searching for infrared (IR) transients with Spitzer/IRAC. We present the discovery and follow-up observations of one of our most luminous (M[4.5]=−17.1±0.4M_{[4.5]} = -17.1\pm0.4 mag, Vega) and red ([3.6]−[4.5]=3.0±0.2[3.6] - [4.5] = 3.0 \pm 0.2 mag) transients, SPIRITS 15c. The transient was detected in a dusty spiral arm of IC 2163 (D≈35.5D\approx35.5 Mpc). Pre-discovery ground-based imaging revealed an associated, shorter-duration transient in the optical and near-IR (NIR). NIR spectroscopy showed a broad (≈8400\approx 8400 km s−1^{-1}), double-peaked emission line of He I at 1.083μ1.083 \mum, indicating an explosive origin. The NIR spectrum of SPIRITS 15c is similar to that of the Type IIb SN 2011dh at a phase of ≈200\approx 200 days. Assuming AV=2.2A_V = 2.2 mag of extinction in SPIRITS 15c provides a good match between their optical light curves. The IR light curves and the extreme [3.6]−[4.5][3.6]-[4.5] color cannot be explained using only a standard extinction law. Another luminous (M4.5=−16.1±0.4M_{4.5} = -16.1\pm0.4 mag) event, SPIRITS 14buu, was serendipitously discovered in the same galaxy. The source displays an optical plateau lasting ≳80\gtrsim 80 days, and we suggest a scenario similar to the low-luminosity Type IIP SN 2005cs obscured by AV≈1.5A_V \approx 1.5 mag. Other classes of IR-luminous transients can likely be ruled out in both cases. If both events are indeed SNe, this may suggest ≳18%\gtrsim 18\% of nearby core-collapse SNe are missed by currently operating optical surveys.Comment: 19 pages, 7 Figures, 4 Table

    Exploring impulsive solar magnetic energy release and particle acceleration with focused hard X-ray imaging spectroscopy

    Get PDF
    How impulsive magnetic energy release leads to solar eruptions and how those eruptions are energized and evolve are vital unsolved problems in Heliophysics. The standard model for solar eruptions summarizes our current understanding of these events. Magnetic energy in the corona is released through drastic restructuring of the magnetic field via reconnection. Electrons and ions are then accelerated by poorly understood processes. Theories include contracting loops, merging magnetic islands, stochastic acceleration, and turbulence at shocks, among others. Although this basic model is well established, the fundamental physics is poorly understood. HXR observations using grazing-incidence focusing optics can now probe all of the key regions of the standard model. These include two above-the-looptop (ALT) sources which bookend the reconnection region and are likely the sites of particle acceleration and direct heating. The science achievable by a direct HXR imaging instrument can be summarized by the following science questions and objectives which are some of the most outstanding issues in solar physics (1) How are particles accelerated at the Sun? (1a) Where are electrons accelerated and on what time scales? (1b) What fraction of electrons is accelerated out of the ambient medium? (2) How does magnetic energy release on the Sun lead to flares and eruptions? A Focusing Optics X-ray Solar Imager (FOXSI) instrument, which can be built now using proven technology and at modest cost, would enable revolutionary advancements in our understanding of impulsive magnetic energy release and particle acceleration, a process which is known to occur at the Sun but also throughout the Universe

    SphinX soft X-ray spectrophotometer: Science objectives, design and performance

    Get PDF
    The goals and construction details of a new design Polish-led X-ray spectrophotometer are described. The instrument is aimed to observe emission from entire solar corona and is placed as a separate block within the Russian TESIS X- and EUV complex aboard the CORONAS-PHOTON solar orbiting observatory. SphinX uses silicon PIN diode detectors for high time resolution measurements of the solar spectra in the range 0.8–15 keV. Its spectral resolution allows for discerning more than hundred separate energy bands in this range. The instrument dynamic range extends two orders of magnitude below and above these representative for GOES. The relative and absolute accuracy of spectral measurements is expected to be better than few percent, as follows from extensive ground laboratory calibrations

    SphinX: The Solar Photometer in X-Rays

    Get PDF
    Solar Photometer in X-rays (SphinX) was a spectrophotometer developed to observe the Sun in soft X-rays. The instrument observed in the energy range ≈ 1 - 15 keV with resolution ≈ 0.4 keV. SphinX was flown on the Russian CORONAS-PHOTON satellite placed inside the TESIS EUV and X telescope assembly. The spacecraft launch took place on 30 January 2009 at 13:30 UT at the Plesetsk Cosmodrome in Russia. The SphinX experiment mission began a couple of weeks later on 20 February 2009 when the first telemetry dumps were received. The mission ended nine months later on 29 November 2009 when data transmission was terminated. SphinX provided an excellent set of observations during very low solar activity. This was indeed the period in which solar activity dropped to the lowest level observed in X-rays ever. The SphinX instrument design, construction, and operation principle are described. Information on SphinX data repositories, dissemination methods, format, and calibration is given together with general recommendations for data users. Scientific research areas in which SphinX data find application are reviewed

    The Importance of Correlations and Fluctuations on the Initial Source Eccentricity in High-Energy Nucleus-Nucleus Collisions

    Get PDF
    In this paper, we investigate various ways of defining the initial source eccentricity using the Monte Carlo Glauber (MCG) approach. In particular, we examine the participant eccentricity, which quantifies the eccentricity of the initial source shape by the major axes of the ellipse formed by the interaction points of the participating nucleons. We show that reasonable variation of the density parameters in the Glauber calculation, as well as variations in how matter production is modeled, do not significantly modify the already established behavior of the participant eccentricity as a function of collision centrality. Focusing on event-by-event fluctuations and correlations of the distributions of participating nucleons we demonstrate that, depending on the achieved event-plane resolution, fluctuations in the elliptic flow magnitude v2v_2 lead to most measurements being sensitive to the root-mean-square, rather than the mean of the v2v_2 distribution. Neglecting correlations among participants, we derive analytical expressions for the participant eccentricity cumulants as a function of the number of participating nucleons, \Npart,keeping non-negligible contributions up to \ordof{1/\Npart^3}. We find that the derived expressions yield the same results as obtained from mixed-event MCG calculations which remove the correlations stemming from the nuclear collision process. Most importantly, we conclude from the comparison with MCG calculations that the fourth order participant eccentricity cumulant does not approach the spatial anisotropy obtained assuming a smooth nuclear matter distribution. In particular, for the Cu+Cu system, these quantities deviate from each other by almost a factor of two over a wide range in centrality.Comment: 18 pages, 10 figures, submitted to PR
    • …
    corecore