1,015 research outputs found

    Design and Characterization of a Textile Electrode System for the Detection of High-Density sEMG

    Get PDF
    Muscle activity monitoring in dynamic conditions is a crucial need in different scenarios, ranging from sport to rehabilitation science and applied physiology. The acquisition of surface electromyographic (sEMG) signals by means of grids of electrodes (High-Density sEMG, HD-sEMG) allows obtaining relevant information on muscle function and recruitment strategies. During dynamic conditions, this possibility demands both a wearable and miniaturized acquisition system and a system of electrodes easy to wear, assuring a stable electrode-skin interface. While recent advancements have been made on the former issue, detection systems specifically designed for dynamic conditions are at best incipient. The aim of this work is to design, characterize, and test a wearable, HD-sEMG detection system based on textile technology. A 32-electrodes, 15 mm inter-electrode distance textile grid was designed and prototyped. The electrical properties of the material constituting the detection system and of the electrode-skin interface were characterized. The quality of sEMG signals was assessed in both static and dynamic contractions. The performance of the textile detection system was comparable to that of conventional systems in terms of stability of the traces, properties of the electrode-skin interface and quality of the collected sEMG signals during quasi-isometric and highly dynamic tasks

    Quantification of cortical proprioceptive processing through a wireless and miniaturized EEG amplifier

    Get PDF
    Corticokinematic coherence (CKC) is computed between limb kinematics and cortical activity (e.g. MEG, EEG), and it can be used to detect, quantify and localize the cortical processing of proprioceptive afference arising from the body. EEG-based studies on CKC have been limited to lab environments due to bulky, non-portable instrumentations. We recently proposed a wireless and miniaturized EEG acquisition system aimed at enabling EEG studies outside the laboratory. The purpose of this work is to compare the EEG-based CKC values obtained with this device with a conventional wired-EEG acquisition system to validate its use in the quantification of cortical proprioceptive processing. Eleven healthy right-handed participants were recruited (six males, four females, age range: 24-40 yr). A pneumatic-movement actuator was used to evoke right index-finger flexion-extension movement at 3 Hz for 4 min. The task was repeated both with the wireless-EEG and wired-EEG devices using the same 30-channel EEG cap preparation. CKC was computed between the EEG and finger acceleration. CKC peaked at the movement frequency and its harmonics, being statistically significant (p < 0.05) in 8-10 out of 11 participants. No statistically significant differences (p < 0.05) were found in CKC strength between wireless-EEG (range 0.03-0.22) and wired-EEG (0.02-0.33) systems, that showed a good agreement between the recording systems (3 Hz: r = 0.57, p = 0.071, 6 Hz: r = 0.82, p = 0.003). As expected, CKC peaked in sensors above the left primary sensorimotor cortex contralateral to the moved right index finger. As the wired-EEG device, the tested wireless-EEG system has proven feasible to quantify CKC, and thus can be used as a tool to study proprioception in the human neocortex. Thanks to its portability, the wireless-EEG used in this study has the potential to enable the examination of cortical proprioception in more naturalistic conditions outside the laboratory environment. Clinical Relevance - Our study will contribute to provide innovative technological foundations for future unobtrusive EEG recordings in naturalistic conditions to examine human sensorimotor system

    Design and validation of a wireless Body Sensor Network for integrated EEG and HD-sEMG acquisitions

    Get PDF
    Sensorimotor integration is the process through which the human brain plans the motor program execution according to external sources. Within this context, corticomuscular and corticokinematic coherence analyses are common methods to investigate the mechanism underlying the central control of muscle activation. This requires the synchronous acquisition of several physiological signals, including EEG and sEMG. Nevertheless, physical constraints of the current, mostly wired, technologies limit their application in dynamic and naturalistic contexts. In fact, although many efforts were made in the development of biomedical instrumentation for EEG and HD-sEMG signal acquisition, the need for an integrated wireless system is emerging. We hereby describe the design and validation of a new fully wireless body sensor network for the integrated acquisition of EEG and HD-sEMG signals. This Body Sensor Network is composed of wireless bio-signal acquisition modules, named sensor units, and a set of synchronization modules used as a general-purpose system for time-locked recordings. The system was characterized in terms of accuracy of the synchronization and quality of the collected signals. An in-depth characterization of the entire system and an end-to-end comparison of the wireless EEG sensor unit with a wired benchmark EEG device were performed. The proposed device represents an advancement of the State-of-the-Art technology allowing the integrated acquisition of EEG and HD-sEMG signals for the study of sensorimotor integration

    Manejo de pragas na cultura da soja: um caso de sucesso da pesquisa.

    Get PDF
    A soja na economia brasileira; Principais problemas da soja no Brasil; As pesquisas com soja desenvolvidas pela EMBRAPA; Controle das pragas: Tecnologia usada pelo agricultor; Manejo de pragas: a tecnologia recomendada pela EMBRAPA; Objetivos; Metodologia; Resultados e discussao: Analise comparativa das tecnologia; Economia representada pela reducao do numero de horas trabalhadas com trator; Economia representada pela reducao do uso de inseticidas; Economia total com plena utilizacao da tecnologia; Outros beneficios da nova tecnologia.bitstream/item/58199/1/Documentos-1.pd

    Changes in the distribution of muscle activity when using a passive trunk exoskeleton depend on the type of working task: A high-density surface EMG study

    Get PDF
    Exoskeleton effectiveness in reducing muscle efforts has been usually assessed from surface electromyograms (EMGs) collected locally. It has been demonstrated, however, muscle activity redistributes within the low back muscles during static and dynamic contractions, suggesting the need of detecting surface EMGs from a large muscle region to reliably investigate changes in global muscle activation. This study used high-density surface EMG to assess the effects of a passive trunk exoskeleton on the distribution of low back muscles’ activity during different working tasks. Ten, male volunteers performed a static and a dynamic task with and without the exoskeleton. Multiple EMGs were sampled bilaterally from the lumbar erector spinae muscles while the hip and knee angles were measured unilaterally. Key results revealed for the static task exoskeleton led to a decrease in the average root mean square (RMS) amplitude (∌10%) concomitantly with a stable mean frequency and a redistribution of muscle activity (∌0.5 cm) in the caudal direction toward the end of the task. For the dynamic task, the exoskeleton reduced the RMS amplitude (∌5%) at the beginning of the task and the variability in the muscle activity distribution during the task. Moreover, a reduced range of motion in the lower limb was observed when using the exoskeleton during the dynamic task. Current results support the notion the passive exoskeleton has the potential to alleviate muscular loading at low back level especially for the static task

    Timing and modulation of activity in the lower limb muscles during indoor rowing: What are the key muscles to target in FES-rowing protocols?

    Get PDF
    The transcutaneous stimulation of lower limb muscles during indoor rowing (FES Rowing) has led to a new sport and recreation and significantly increased health benefits in paraplegia. Stimulation is often delivered to quadriceps and hamstrings; this muscle selection seems based on intuition and not biomechanics and is likely suboptimal. Here, we sample surface EMGs from 20 elite rowers to assess which, when, and how muscles are activated during indoor rowing. From EMG amplitude we specifically quantified the onset of activation and silencing, the duration of activity and how similarly soleus, gastrocnemius medialis, tibialis anterior, rectus femoris, vastus lateralis and medialis, semitendinosus, and biceps femoris muscles were activated between limbs. Current results revealed that the eight muscles tested were recruited during rowing, at different instants and for different durations. Rectus and biceps femoris were respectively active for the longest and briefest periods. Tibialis anterior was the only muscle recruited within the recovery phase. No side differences in the timing of muscle activity were observed. Regression analysis further revealed similar, bilateral modulation of activity. The relevance of these results in determining which muscles to target during FES Rowing is discussed. Here, we suggest a new strategy based on the stimulation of vasti and soleus during drive and of tibialis anterior during recovery

    Assessment of Exoskeleton Related Changes in Kinematics and Muscle Activity

    Get PDF
    Work-related musculoskeletal disorders, reported at shoulder and low back regions, rank among the most serious health problems in industry. Owing to their ability in providing support to the shoulder and back regions during sustained and repetitive tasks, passive exoskeletons are expected to prevent work-related disorders. In this work, experimental protocols were conducted for the extraction of relevant information regarding the neuromuscular activation and kinematics during simulated working activities with passive exoskeletons. Our results support the notion these passive exoskeletons have the potential to alleviate muscular loading and therefore to prevent musculoskeletal disorders in the industrial sector

    Insetos da soja no Brasil.

    Get PDF
    Insetos-pragas da soja; Inimigos naturais de insetos-pragas da soja; Importancia economica de especies-pragas da soja; Sistemas de manejo de insetos da soja.bitstream/item/77369/1/CNPSO-BOL.-TEC.-1-77.pd

    Design of a Programmable and Modular Neuromuscular Electrical Stimulator Integrated into a Wireless Body Sensor Network

    Get PDF
    Neuromuscular electrical stimulation finds application in several fields, from basic neurophysiology, to motor rehabilitation and cardiovascular conditioning. Despite the progressively increasing interest in this technique, its State-of-the-Art technology is mainly based on monolithic, mostly wired devices, leading to two main issues. First, these devices are often bulky, limiting their usability in applied contexts. Second, the possibility of interfacing these stimulation devices with external systems for the acquisition of electrophysiological and biomechanical variables to control the stimulation output is often limited. The aim of this work is to describe the design and development of an innovative electrical stimulator, specifically developed to contend with these issues. The developed device is composed of wireless modules that can be programmed and easily interfaced with third-party instrumentation. Moreover, benefiting from the system modular architecture, stimulation may be delivered concurrently to different sites while greatly reducing cable encumbrance. The main design choices and experimental tests are documented, evidencing the practical potential of the device in use-case scenarios

    The Effect of Passive Exoskeleton on Shoulder Muscles Activity during Different Static Tasks

    Get PDF
    In this study we used the bipolar surface electromyography to investigate whether a passive exoskeleton reduces the degree of activity of shoulder muscles. Twelve young healthy volunteers participated in the study. Subjects were asked to hold four different static postures: (P1) shoulder abducted at 90°, elbow flexed at 90°, elbow pronated at 90°; (P2) shoulder flexed at 90°, elbow flexed at 90°, elbow pronated at 90°; (P3) shoulder flexed at 90°, elbow pronated at 90°; (P4) shoulder abducted at 90°, elbow pronated at 90°. Subjects maintained each posture for 20 seconds five consecutive times, with a rest time in-between of 20 seconds. Surface EMG signals were collected from anterior, medial and posterior deltoids and upper trapezius muscles. Our main statistical results showed a significant (p < 0.05) attenuation effect of exoskeleton on the RMS amplitude computed for all muscles evaluated, though not for all postures. For the anterior, medial deltoids and upper trapezius a lower level of activity was observed in all postures with than without exoskeleton, while for posterior deltoid only for P2-P3 and P1-P4 respectively. These findings suggest the passive exoskeleton evaluated in this study attenuates the shoulder muscles’ effort during static work-related tasks, with implications on the prevention of musculoskeletal disorders
    • 

    corecore