81 research outputs found

    Effect of Polydispersity and Anisotropy in Colloidal and Protein Solutions: an Integral Equation Approach

    Full text link
    Application of integral equation theory to complex fluids is reviewed, with particular emphasis to the effects of polydispersity and anisotropy on their structural and thermodynamic properties. Both analytical and numerical solutions of integral equations are discussed within the context of a set of minimal potential models that have been widely used in the literature. While other popular theoretical tools, such as numerical simulations and density functional theory, are superior for quantitative and accurate predictions, we argue that integral equation theory still provides, as in simple fluids, an invaluable technique that is able to capture the main essential features of a complex system, at a much lower computational cost. In addition, it can provide a detailed description of the angular dependence in arbitrary frame, unlike numerical simulations where this information is frequently hampered by insufficient statistics. Applications to colloidal mixtures, globular proteins and patchy colloids are discussed, within a unified framework.Comment: 17 pages, 7 figures, to appear in Interdiscip. Sci. Comput. Life Sci. (2011), special issue dedicated to Prof. Lesser Blu

    A corresponding states approach to Small-Angle-Scattering for polydisperse ionic colloidal fluids

    Full text link
    Approximate scattering functions for polydisperse ionic colloidal fluids are obtained by a corresponding states approach. This assumes that all pair correlation functions gαβ(r)g_{\alpha \beta}(r) of a polydisperse fluid are conformal to those of an appropriate monodisperse binary fluid (reference system) and can be generated from them by scaling transformations. The correspondence law extends to ionic fluids a {\it scaling approximation} (SA) successfully proposed for nonionic colloids in a recent paper. For the primitive model of charged hard spheres in a continuum solvent, the partial structure factors of the monodisperse binary reference system are evaluated by solving the Orstein-Zernike (OZ) integral equations coupled with an approximate closure. The SA is first tested within the mean spherical approximation (MSA) closure, which allows analytical solutions. The results are found in good overall agreement with exact MSA predictions up to relevant polidispersity. The SA is shown to be an improvement over the ``decoupling approximation'' extended to the ionic case. The simplicity of the SA scheme allows its application also when the OZ equations can be solved only numerically. An example is then given by using the hypernetted chain (HNC) closure. Shortcomings of the SA approach, its possible use in the analysis of experimental scattering data and other related points are also briefly addressed.Comment: 29 pages, 7 postscript figures (included), Latex 3.0, uses aps.sty, to appear in Phys. Rev. E (1999

    Structure of ternary additive hard-sphere fluid mixtures

    Full text link
    Monte Carlo simulations on the structural properties of ternary fluid mixtures of additive hard spheres are reported. The results are compared with those obtained from a recent analytical approximation [S. B. Yuste, A. Santos, and M. Lopez de Haro, J. Chem. Phys. 108, 3683 (1998)] to the radial distribution functions of hard-sphere mixtures and with the results derived from the solution of the Ornstein-Zernike integral equation with both the Martynov-Sarkisov and the Percus-Yevick closures. Very good agreement between the results of the first two approaches and simulation is observed, with a noticeable improvement over the Percus-Yevick predictions especially near contact.Comment: 11 pages, including 8 figures; A minor change; accepted for publication in PR

    A numerical study of a binary Yukawa model in regimes characteristic of globular proteins in solutions

    Full text link
    The main goal of this paper is to assess the limits of validity, in the regime of low concentration and strong Coulomb coupling (high molecular charges), for a simple perturbative approximation to the radial distribution functions (RDF), based upon a low-density expansion of the potential of mean force and proposed to describe protein-protein interactions in a recent Small-Angle-Scattering (SAS) experimental study. A highly simplified Yukawa (screened Coulomb) model of monomers and dimers of a charged globular protein (β\beta -lactoglobulin) in solution is considered. We test the accuracy of the RDF approximation, as a necessary complementary part of the previous experimental investigation, by comparison with the fluid structure predicted by approximate integral equations and exact Monte Carlo (MC) simulations. In the MC calculations, an Ewald construction for Yukawa potentials has been used to take into account the long-range part of the interactions in the weakly screened cases. Our results confirm that the perturbative first-order approximation is valid for this system even at strong Coulomb coupling, provided that the screening is not too weak (i.e., for Debye length smaller than monomer radius). A comparison of the MC results with integral equation calculations shows that both the hypernetted-chain (HNC) and the Percus-Yevick (PY) closures have a satisfactory behavior under these regimes, with the HNC being superior throughout. The relevance of our findings for interpreting SAS results is also discussed.Comment: Physical Review E, in press (2005

    Intention to be vaccinated for COVID-19 among italian nurses during the pandemic

    Get PDF
    Background: While the COVID-19 pandemic has spread globally, health systems are overwhelmed by both direct and indirect mortality from other treatable conditions. COVID-19 vaccination was crucial to preventing and eliminating the disease, so vaccine development for COVID-19 was fast-tracked worldwide. Despite the fact that vaccination is commonly recognized as the most effective approach, according to the World Health Organization (WHO), vaccine hesitancy is a global health issue. Methods: We conducted a cross-sectional online survey of nurses in four different regions in Italy between 20 and 28 December 2020 to obtain data on the acceptance of the upcoming COVID-19 vaccination in order to plan specific interventions to increase the rate of vaccine coverage. Results: A total of 531 out of the 5000 nurses invited completed the online questionnaire. Most of the nurses enrolled in the study (73.4%) were female. Among the nurses, 91.5% intended to accept vaccination, whereas 2.3% were opposed and 6.2% were undecided. Female sex and confidence in vaccine efficacy represent the main predictors of vaccine intention among the study population using a logistic regression model, while other factors including vaccine safety concerns (side effects) were non-significant. Conclusions: Despite the availability of a safe and effective vaccine, intention to be vaccinated was suboptimal among nurses in our sample. We also found a significant number of people undecided as to whether to accept the vaccine. Contrary to expectations, concerns about the safety of the vaccine were not found to affect the acceptance rate; nurses’ perception of vaccine efficacy and female sex were the main influencing factors on attitudes toward vaccination in our sample. Since the success of the COVID-19 immunization plan depends on the uptake rate, these findings are of great interest for public health policies. Interventions aimed at increasing employee awareness of vaccination efficacy should be promoted among nurses in order to increase the number of vaccinated people

    Variability-aware Datalog

    Full text link
    Variability-aware computing is the efficient application of programs to different sets of inputs that exhibit some variability. One example is program analyses applied to Software Product Lines (SPLs). In this paper we present the design and development of a variability-aware version of the Souffl\'{e} Datalog engine. The engine can take facts annotated with Presence Conditions (PCs) as input, and compute the PCs of its inferred facts, eliminating facts that do not exist in any valid configuration. We evaluate our variability-aware Souffl\'{e} implementation on several fact sets annotated with PCs to measure the associated overhead in terms of processing time and database size.Comment: PADL'20 pape

    An analysis of the social and economic costs of breast cancer in Italy

    Get PDF
    Breast cancer is the most prevalent cancer affecting women and it represents an important economic burden. The aim of this study was to estimate the socio-economic burden of breast cancer (BC) in Italy both from the National Health Service (NHS) and the government perspectives (costs borne by the social security system)

    Population inversion of a NAHS mixture adsorbed into a cylindrical pore

    Full text link
    A cylindrical nanopore immersed in a non-additive hard sphere binary fluid is studied by means of integral equation theories and Monte Carlo simulations. It is found that at low and intermediate values of the bulk total number density the more concentrated bulk species is preferentially absorbed by the pore, as expected. However, further increments of the bulk number density lead to an abrupt population inversion in the confined fluid and an entropy driven prewetting transition at the outside wall of the pore. These phenomena are a function of the pore size, the non-additivity parameter, the bulk number density, and particles relative number fraction. We discuss our results in relation to the phase separation in the bulk.Comment: 7 pages, 8 Figure
    • …
    corecore