9 research outputs found

    Immunofluorescent Localization Of Basement Membrane In Lesions Of Dermatitis Herpetiformis

    Get PDF
    Dermatitis herpetiformis (DH) is a blistering disease with a characteristic histology that includes papillary edema, neutrophilic papillary microabscesses, and development of subepidermal blisters. In spite of this pathologic sequence occurring entirely beneath the basement membrane zone, prior studies have indicated that the basement membrane, as defined by periodic acid-Schiff (PAS) or silver stains, lies at the floor of fully formed blisters or is destroyed by the disease process. To more accurately assess its location in primary lesions of DH, the basement membrane was stained using immunofluorescent techniques.Lesional skin from 5 patients with DH was used as substrate for indirect immunofluorescence with sera from patients with bullous pemphigoid (BP) and fluoresceinated antihuman IgG. The BP-stained basement membrane was attached to the roofs of early blisters, where it would be expected from the pathologic sequence of blister formation. PAS stains of the same or serial sections show the basement membrane to be in the roof or at the floor of the blisters. PAS stains of sections from formalin-fixed lesional skin, on the other hand, show the basement membrane to routinely lie at the blister floor, when not destroyed.The BP-stained epidermal basement membrane has greater anatomic and functional significance than either the PAS- or silver-stained basement membrane for two reasons: (1) it corresponds to a specific morphologic structure, the lamina lucida, a part of the epidermis, and remains attached to the rest of the epidermis unless destroyed; and (2) it is antigenic, capable of binding with BP antibodies

    An antiproton driver for ICF propulsion

    Get PDF
    Inertial confinement fusion (ICF) utilizing an anitprotoncatalyzed target is discussed as a possible source of propulsion for rapid interplanetary manned space missions. The relevant compression, ignition, and thrust mechanisms are presented. Progress on an experiment presently in progress at the Phillips Laboratory, Kirtland AFB, NM to demonstrate proof-of-principle is reviewed

    Improved Interpretation of Mercury Intrusion and Soil Water Retention Percolation Characteristics by Inverse Modelling and Void Cluster Analysis

    Get PDF
    This work addresses two continuing fallacies in the interpretation of percolation characteristics of porous solids. The first is that the first derivative (slope) of the intrusion characteristic of the non-wetting fluid or drainage characteristic of the wetting fluid corresponds to the void size distribution, and the second is that the sizes of all voids can be measured. The fallacies are illustrated with the aid of the PoreXpert® inversemodelling package.Anewvoid analysis method is then described, which is an add-on to the inverse modelling package and addresses the second fallacy. It is applied to three widely contrasting and challenging porous media. The first comprises two fine-grain graphites for use in the next-generation nuclear reactors. Their larger void sizes were measured by mercury intrusion, and the smallest by using a grand canonical Monte Carlo interpretation of surface area measurement down to nanometre scale. The second application is to the mercury intrusion of a series of mixtures of ground calcium carbonate with powdered microporous calcium carbonate known as functionalised calcium carbonate (FCC). The third is the water retention/drainage characteristic of a soil sample which undergoes naturally occurring hydrophilic/hydrophobic transitions. The first-derivative approximation is shown to be reasonable in the interpretation of the mercury intrusion porosimetry of the two graphites, which differ only at low mercury intrusion pressures, but false for FCC and the transiently hydrophobic soil. The findings are supported by other experimental characterisations, in particular electron and atomic force microscopy

    Alginate oligosaccharides enhance the antifungal activity of nystatin against candidal biofilms

    Get PDF
    Background: The increasing prevalence of invasive fungal infections in immuno-compromised patients is a considerable cause of morbidity and mortality. With the rapid emergence of antifungal resistance and an inadequate pipeline of new therapies, novel treatment strategies are now urgently required. Methods: The antifungal activity of the alginate oligosaccharide OligoG in conjunction with nystatin was tested against a range of Candida spp. (C. albicans, C. glabrata, C. parapsilosis, C. auris, C. tropicalis and C. dubliniensis), in both planktonic and biofilm assays, to determine its potential clinical utility to enhance the treatment of candidal infections. The effect of OligoG (0-6%) ± nystatin on Candida spp. was examined in minimum inhibitory concentration (MIC) and growth curve assays. Antifungal effects of OligoG and nystatin treatment on biofilm formation and disruption were characterized using confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM) and ATP cellular viability assays. Effects on the cell membrane were determined using permeability assays and transmission electron microscopy (TEM). Results: MIC and growth curve assays demonstrated the synergistic effects of OligoG (0-6%) with nystatin, resulting in an up to 32-fold reduction in MIC, and a significant reduction in the growth of C. parapsilosis and C. auris (minimum significant difference = 0.2 and 0.12 respectively). CLSM and SEM imaging demonstrated that the combination treatment of OligoG (4%) with nystatin (1 µg/ml) resulted in significant inhibition of candidal biofilm formation on glass and clinical grade silicone surfaces (p < 0.001), with increased cell death (p < 0.0001). The ATP biofilm disruption assay demonstrated a significant reduction in cell viability with OligoG (4%) alone and the combined OligoG/nystatin (MIC value) treatment (p < 0.04) for all Candida strains tested. TEM studies revealed the combined OligoG/nystatin treatment induced structural reorganization of the Candida cell membrane, with increased permeability when compared to the untreated control (p < 0.001). Conclusions: Antimicrobial synergy between OligoG and nystatin against Candida spp. highlights the potential utility of this combination therapy in the prevention and topical treatment of candidal biofilm infections, to overcome the inherent tolerance of biofilm structures to antifungal agents
    corecore