23 research outputs found

    Characterization of ATG8-family protein phosphorylation by Phos-tag gel for autophagy study

    No full text
    Autophagy supports cell survival under different stress conditions, where ATG8-family proteins are required for autophagosome biogenesis/maturation and selective autophagy. Here, we present a protocol for studying ATG8-family protein phosphorylation using Phos-tag gel, a modified SDS-PAGE system, when the related phosphorylation site information and/or specific phospho-antibody are unavailable. We describe steps for generating GST-ATG8 proteins in bacteria, purifying S protein-Flag-SBP protein (SFB)-tagged kinasefrom cells, preparing gel, and an in vitro kinase assay. We then detail procedures for western blotting and image processing. For complete details on the use and execution of this protocol, please refer to Seo et al.1

    Primary Peritoneal Psammocarcinoma Misdiagnosed as an Heterotopic Ossification: A Case Report

    No full text
    Primary peritoneal psammocarcinoma is a rare type of serous carcinoma that is characterized by the massive formation of psammoma bodies and the invasion of adjacent organs. A 55-year-old female who previously underwent a hysterectomy presented to the emergency room with severe abdominal pain. Contrast-enhanced CT revealed an intra-abdominal calcific mass. Initially, it was thought to be a heterotopic ossification due to the previous pelvic surgery with intact ovaries. However, this was diagnosed as a primary peritoneal psammocarcinoma. Primary peritoneal psammocarcinoma is a very rare disease entity that should be considered a differential diagnosis in patients with normal ovaries, massive ossification in the pelvic cavity, and calcific peritoneal nodules

    Phosphatidic acid: a lipid regulator of the Hippo pathway

    Get PDF
    The Hippo pathway, a signaling pathway highly conserved across species, plays a crucial role in organ size control and cancer suppression. Our recent study shows that phosphatidic acid can regulate the Hippo pathway through a physical lipid-protein interaction, providing additional insights into the Hippo-related tissue homeostasis and cancer development

    The wound healing effect of four types of beta-glucan

    No full text
    Abstract Beta-glucans, which existed in the cell walls of cereals, bacteria, and fungi, comprise a group of β-d-glucose polysaccharides. We investigated the effects of four kinds of beta-glucan, that are derived from barley, yeast, mushroom, and euglena on wound healing. The migration and viability of keratinocyte or fibroblast were analyzed using the in vitro scratch wound healing assay, invasion assay, MTT assay, and in vivo assay. All the beta-glucans had a significant effect on keratinocyte migration at 20 μM and showed no toxicity on dermal fibroblast. Moreover, treatment of keratinocytes with the beta-glucan derived from the mushroom (Schizophyllum commune) promoted in vivo wound closure. The Integrin/FAK/Src pathway is known to affect cell migration by forming lamellipodia. Beta-glucan from S. commune activates the Integrin/FAK/Src signaling pathway in a time-dependent. Reactive oxygen species are associated with fibroblast differentiation to contract dermal layer and synthesize collagens. We found that fibroblast was activated by increasing NOX4 expression. We propose that beta-glucan derived from mushroom is capable of promoting keratinocyte migration via the induction of FAK/Src phosphorylation there by accelerating wound closure and activating dermal fibroblast differentiation through NADPH oxidase for matrix remodeling

    Stabilized Perovskite Quantum Dot Solids via Nonpolar Solvent Dispersible Covalent Ligands

    No full text
    Abstract The ligand exchange procedure of CsPbI3 perovskite quantum dots (PQDs) enables the fabrication of thick and conductive PQD solids that act as a photovoltaic absorber for solution‐processed thin‐film solar cells. However, the ligand‐exchanged CsPbI3 PQD solids suffer from deterioration in photovoltaic performance and ambient stability due to the surface traps, such as uncoordinated Pb2+ sites on the PQD surface, which are generated after the conventional ligand exchange process using ionic short‐chain ligands dissolved in polar solvents. Herein, a facile surface stabilization is demonstrated that can simultaneously improve the photovoltaic performance and ambient stability of CsPbI3 PQD photovoltaic absorber using covalent short‐chain triphenylphosphine oxide (TPPO) ligands dissolved in a nonpolar solvent. It is found that the TPPO ligand can be covalently bound to uncoordinated Pb2+ sites and the nonpolar solvent octane can completely preserve the PQD surface components. Owing to their synergetic effects, the CsPbI3 PQD photovoltaic absorber stabilized using the TPPO ligand solution dissolved in octane exhibit higher optoelectrical properties and ambient stability than the control absorber. Consequently, CsPbI3 PQD solar cells composed of PQD photovoltaic absorbers fabricated via surface stabilization strategy provide an improved power conversion efficiency of 15.4% and an enhanced device stability

    Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases

    No full text
    DddA-derived cytosine base editors (DdCBEs), composed of the split interbacterial toxin DddA(tox), transcription activator-like effector (TALE), and uracil glycosylase inhibitor (UGI), enable targeted C-to-T base conversions in mitochondrial DNA (mtDNA). Here, we demonstrate highly efficient mtDNA editing in mouse embryos using custom-designed DdCBEs. We target the mitochondrial gene, MT-ND5 (ND5), which encodes a subunit of NADH dehydrogenase that catalyzes NADH dehydration and electron transfer to ubiquinone, to obtain several mtDNA mutations, including m.G12918A associated with human mitochondrial diseases and m.C12336T that incorporates a premature stop codon, creating mitochondrial disease models in mice and demonstrating a potential for the treatment of mitochondrial disorders. Split DddA-derived base editors fused to TALEs enable mitochondrial DNA editing. Here the authors demonstrate their use in mouse embryos with germline transmission.11Nsciescopu
    corecore