86 research outputs found

    Chlorination by-products in drinking water and menstrual cycle function.

    Get PDF
    We analyzed data from a prospective study of menstrual cycle function and early pregnancy loss to explore further the effects of trihalomethanes (THM) on reproductive end points. Premenopausal women ((italic)n(/italic) = 403) collected urine samples daily during an average of 5.6 cycles for measurement of steroid metabolites that were used to define menstrual parameters such as cycle and phase length. Women were asked about consumption of various types of water as well as other habits and demographics. A THM level was estimated for each cycle based on residence and quarterly measurements made by water utilities during a 90-day period beginning 60 days before the cycle start date. We found a monotonic decrease in mean cycle length with increasing total THM (TTHM) level; at > 60 microg/L, the adjusted decrement was 1.1 days [95% confidence interval (CI), -1.8 to -0.40], compared with less than or equal to 40 microg/L. This finding was also reflected as a reduced follicular phase length (difference -0.94 day; 95% CI, -1.6 to -0.24). A decrement in cycle and follicular phase length of 0.18 days (95% CI, -0.29 to -0.07) per 10 microg/L unit increase in TTHM concentration was found. There was little association with luteal phase length, menses length, or cycle variability. Examining the individual THMs by quartile, we found the greatest association with chlorodibromomethane or the sum of the brominated compounds. Incorporating tap water consumption showed a similar pattern of reduced cycle length with increasing TTHM exposure. These findings suggest that THM exposure may affect ovarian function and should be confirmed in other studies

    Residential proximity to traffic and female pubertal development

    Get PDF
    Traffic-related air pollution (TRAP) has been linked with several adverse health outcomes, including preterm birth and low birth weight, which are both related to onset of puberty. No studies to date have investigated the association between TRAP and altered pubertal timing

    Cigarette Smoking and Effects on Hormone Function in Premenopausal Women

    Get PDF
    Cigarette smoke contains compounds that are suspected to cause reproductive damage and possibly affect hormone activity; therefore, we examined hormone metabolite patterns in relation to validated smoking status. We previously conducted a prospective study of women of reproductive age (n = 403) recruited from a large health maintenance organization, who collected urine daily during an average of three to four menstrual cycles. Data on covariates and daily smoking habits were obtained from a baseline interview and daily diary, and smoking status was validated by cotinine assay. Urinary metabolite levels of estrogen and progesterone were measured daily throughout the cycles. For the present study, we measured urinary levels of the pituitary hormone follicle-stimulating hormone (FSH) in a subset of about 300 menstrual cycles, selected by smoking status, with the time of transition between two cycles being of primary interest. Compared with nonsmokers, moderate to heavy smokers (≥ 10 cigarettes/day) had baseline levels (e.g., early follicular phase) of both steroid metabolites that were 25–35% higher, and heavy smokers (≥ 20 cigarettes/day) had lower luteal-phase progesterone metabolite levels. The mean daily urinary FSH levels around the cycle transition were increased at least 30–35% with moderate smoking, even after adjustment. These patterns suggest that chemicals in tobacco smoke alter endocrine function, perhaps at the level of the ovary, which in turn effects release of the pituitary hormones. This endocrine disruption likely contributes to the reported associations of smoking with adverse reproductive outcomes, including menstrual dysfunction, infertility, and earlier menopause

    Maternal Exposure to Occupational Asthmagens During Pregnancy and Autism Spectrum Disorder in the Study to Explore Early Development

    Get PDF
    Abstract Maternal immune activity has been linked to children with autism spectrum disorder (ASD). We examined maternal occupational exposure to asthma-causing agents during pregnancy in relation to ASD risk. Our sample included 463 ASD cases and 710 general population controls from the Study to Explore Early Development whose mothers reported at least one job during pregnancy. Asthmagen exposure was estimated from a published job-exposure matrix. The adjusted odds ratio for ASD comparing asthmagen-exposed to unexposed was 1.39 (95 % CI 0.96–2.02). Maternal workplace asthmagen exposure was not associated with ASD risk in this study, but this result does not exclude some involvement of maternal exposure to asthma-causing agents in ASD

    Presence of an epigenetic signature of prenatal cigarette smoke exposure in childhood

    Get PDF
    Prenatal exposure to tobacco smoke has lifelong health consequences. Epigenetic signatures such as differences in DNA methylation (DNAm) may be a biomarker of exposure and, further, might have functional significance for how in utero tobacco exposure may influence disease risk. Differences in infant DNAm associated with maternal smoking during pregnancy have been identified. Here we assessed whether these infant DNAm patterns are detectible in early childhood, whether they are specific to smoking, and whether childhood DNAm can classify prenatal smoke exposure status. Using the Infinium 450 K array, we measured methylation at 26 CpG loci that were previously associated with prenatal smoking in infant cord blood from 572 children, aged 3–5, with differing prenatal exposure to cigarette smoke in the Study to Explore Early Development (SEED). Striking concordance was found between the pattern of prenatal smoking associated DNAm among preschool aged children in SEED and those observed at birth in other studies. These DNAm changes appear to be tobacco-specific. Support vector machine classification models and 10-fold cross-validation were applied to show classification accuracy for childhood DNAm at these 26 sites as a biomarker of prenatal smoking exposure. Classification models showed prenatal exposure to smoking can be assigned with 81% accuracy using childhood DNAm patterns at these 26 loci. These findings support the potential for blood-derived DNAm measurements to serve as biomarkers for prenatal exposure

    High body burdens of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in California women.

    Get PDF
    Following our first report on elevated polybrominated diphenyl ether (PBDE) concentrations in California women, we expanded our investigation to include diverse groups of local women. We analyzed additional adipose and serum samples collected in the late 1990s from San Francisco Bay Area women participating in a breast cancer study and in a reproductive study, respectively. Adipose samples (n = 32) were analyzed by low-resolution mass spectrometry in negative-ion chemical ionization mode, whereas serum samples (n = 50) were analyzed by dual-column gas chromatography with electron capture detection. The results confirmed our earlier findings. Concentrations of 2,2,4,4 -tetrabromodiphenyl ether (BDE-47) in contemporary California women ranged between 5 and 510 ng/g lipid, with a median (16.5 ng/g lipid) 3-10 times higher than those reported from Europe. In contrast, PBDEs were not measurable in any of 420 archived serum samples collected in the 1960s from San Francisco Bay Area women participating in a study of child development. BDE-47 concentrations did not increase with age or with concentrations of a polychlorinated biphenyl (PCB-153), suggesting other routes of exposure in addition to diet. Rising body burdens of endocrine-disrupting chemicals such as PBDEs may pose a potential public health threat
    corecore