7 research outputs found

    The Effect of Hydrogen Peroxide based Hand Sanitizing Chemicals on the Physicomechanical Properties of the NBR Gloves

    Get PDF
    During the Covid-19 pandemic, according to the guidelines given by the World Health Organization (WHO), all industrial and examination gloves are subjected to disinfection globally using hand sanitizers. This may affect the physicomechanical properties of the gloves. However, limited data are available regarding the aforesaid issue. This research is focused on investigating the effect of hydrogen peroxide-based hand sanitizer formulations, recommended by WHO on the chemical and physicomechanical properties of NBR gloves. NBR gloves were exposed to sanitizing chemicals with different application frequencies for eight hours and the properties were evaluated after 48 hours. The results revealed that there is no significant effect of sanitizer formulation on the mechanical properties of NBR gloves such as tensile strength, tear resistance, elongation at break, modulus at 100%, and 300% even at high frequent applications. Physical properties such as discoloration, swelling, and leakages were also not affected by the application of sanitizers. Further, DSC and TGA test results revealed that there is no significant change in crystallinity and thermal properties between control and test samples. However, FT-IR analysis indicated a change in the chemical environment of the surface of the glove specimens. Since FT-IR is a surface analysis technique, it can be identified as the surface of the gloves has been affected by the exposure to sanitizer formulations. Nevertheless, the inadequate time for the hand sanitizing chemicals to be penetrated to the core of the gloves might result in unchanged physicomechanical properties within 48 hours. Knowing the fact that the examination gloves have a very short usage time, it can be concluded that the effect of hydrogen peroxide-based hand sanitizer formulations on NBR examination gloves is negligible. However, we highlight the importance of conducting further research for an extended period to evaluate the effect of the exposure on heavy-duty NBR gloves such as industrial gloves

    Urea-Hydroxyapatite-Polymer Nanohybrids as Seed Coatings for Enhanced Germination

    Get PDF
    Modern agriculture practices play a vital role in fulfilling the doubling food demands of the increasing population. In particular, several attempts have been made to enhance the nutrient supply and plant uptake process in different growth stages of plants, but little effort has been made to enhance the nutrient status of the seeds at the seedling stage. At this stage of growth, phosphorus is the most essential nutrient, and the requirement is high, while nitrogen requirement is very low. This study focuses on developing a seed coating containing urea-modified hydroxyapatite nanocomposite to supply N and P to the seedlings in a controlled manner throughout the early growth stage. A nanohybrid based on urea-modified hydroxyapatite was synthesized using an in-situ sol-gel method and further combined with an alginate/cellulose polymer to develop the coating. Seed coating was realized using a dip coating method containing calcium chloride as the cross-linking agent. Seed germination experiments were conducted under laboratory conditions according to a randomized complete block design under constant light conditions, controlled humidity, and temperature. The structural features of the nanocomposite were studied using powder X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopic data was used to analyze the morphology. The formation of HA nanoparticles was confirmed by powder x-ray diffraction patterns that revealed the characteristic peaks for (002), (211), (300), and (202) planes of HA. Furthermore, the successful insertion of urea into the HA lattice was corroborated by both the powder X-ray diffraction and Fourier transform infrared spectroscopic techniques. Nanocomposite coatings of 50 -100 μm demonstrated excellent compatibility with the surfaces of the seeds. Seed coating composed of hydroxyapatite-urea (1:0.3) treatment revealed an increase of 124.6%, 147.6%, 100%, and 166.7% in average biomass, root length, number of roots, and maximum plant width, respectively, compared to the control, after 21 days of planting.Keywords: Urea Modified Hydroxyapatite, Nanocomposite, Alginate, Carboxymethyl Cellulose, Seed Coating, Germination

    Synthesis of Magnetite Nanoparticles by Top-Down Approach from a High Purity Ore

    Get PDF
    This study attempts to synthesize magnetite nanoparticles from a high purity natural iron oxide ore found in Panvila, Sri Lanka, following a novel top-down approach. Powder X-Ray diffraction, elemental analysis, and chemical analysis data confirmed the ore to be exclusively magnetite with Fe2+ : Fe3+ ratio of 1 : 2. Surface modified magnetite nanoparticles were synthesized by destructuring of this ore using a top-down approach in the presence of oleic acid. These oleic acid coated nanoparticles were further dispersed in ethanol resulting in stable nanomagnetite dispersion. Interestingly, the nanoparticles demonstrated a spherical morphology with a particle size ranging from 20 to 50 nm. Magnetic force microscopic data was used to confirm the topography of the nanoparticles and to study the magnetic domain structure

    Urea-Hydroxyapatite Nanohybrids for Slow Release of Nitrogen.

    Get PDF
    While slow release of chemicals has been widely applied for drug delivery, little work has been done on using this general nanotechnology-based principle for delivering nutrients to crops. In developing countries, the cost of fertilizers can be significant and is often the limiting factor for food supply. Thus, it is important to develop technologies that minimize the cost of fertilizers through efficient and targeted delivery. Urea is a rich source of nitrogen and therefore a commonly used fertilizer. We focus our work on the synthesis of environmentally benign nanoparticles carrying urea as the crop nutrient that can be released in a programmed manner for use as a nanofertilizer. In this study, the high solubility of urea molecules has been reduced by incorporating it into a matrix of hydroxyapatite nanoparticles. Hydroxyapatite nanoparticles have been selected due to their excellent biocompatibility while acting as a rich phosphorus source. In addition, the high surface area offered by nanoparticles allows binding of a large amount of urea molecules. The method reported here is simple and scalable, allowing the synthesis of a urea-modified hydroxyapatite nanohybrid as fertilizer having a ratio of urea to hydroxyapatite of 6:1 by weight. Specifically, a nanohybrid suspension was synthesized by in situ\textit{in situ} coating of hydroxyapatite with urea at the nanoscale. In addition to the stabilization imparted due to the high surface area to volume ratio of the nanoparticles, supplementary stabilization leading to high loading of urea was provided by flash drying the suspension to obtain a solid nanohybrid. This nanohybrid with a nitrogen weight of 40% provides a platform for its slow release. Its potential application in agriculture to maintain yield and reduce the amount of urea used is demonstrated.Authors thank Hayleys Agro Ltd., Sri Lanka for initiating this research programme at SLINTEC and Nagarjuna Fertilizer and Chemical Ltd (NFCL), India for providing further support. Authors acknowledge Mr Sunanda Gunesekara of SLINTEC for assistance with scaling up the production process to enable the field trials. ARK acknowledges the financial support received from ICTPELETTRA Users Program, Trieste, Italy to conduct photoemission experiments at Materials Science beam line (MSB) and ELETTRA SRS on HA and urea coated HA samples. ARK further acknowledges Dr. R.G. Acres of MSB beam line for his extensive support to conduct photoemission experiments. We acknowledge the Department of Agriculture and Rice Research and Development Institute of Sri Lanka, in particular Dr Priyantha Weerasinghe, Mr D Sirisena and Dr Amitha Benthota for the assistance in carrying out pot and farmers filed trials. NFCL and Central Salt & Marine Chemicals Research Institute, Gujarat, India for TEM and BET analysis

    Urea-Hydroxyapatite Nanohybrids for Slow Release of Nitrogen

    Get PDF
    While slow release of chemicals has been widely applied for drug delivery, little work has been done on using this general nanotechnology-based principle for delivering nutrients to crops. In developing countries, the cost of fertilizers can be significant and is often the limiting factor for food supply. Thus, it is important to develop technologies that minimize the cost of fertilizers through efficient and targeted delivery. Urea is a rich source of nitrogen and therefore a commonly used fertilizer. We focus our work on the synthesis of environmentally benign nanoparticles carrying urea as the crop nutrient that can be released in a programmed manner for use as a nanofertilizer. In this study, the high solubility of urea molecules has been reduced by incorporating it into a matrix of hydroxyapatite nanoparticles. Hydroxyapatite nanoparticles have been selected due to their excellent biocompatibility while acting as a rich phosphorus source. In addition, the high surface area offered by nanoparticles allows binding of a large amount of urea molecules. The method reported here is simple and scalable, allowing the synthesis of a urea-modified hydroxyapatite nanohybrid as fertilizer having a ratio of urea to hydroxyapatite of 6:1 by weight. Specifically, a nanohybrid suspension was synthesized by in situ\textit{in situ} coating of hydroxyapatite with urea at the nanoscale. In addition to the stabilization imparted due to the high surface area to volume ratio of the nanoparticles, supplementary stabilization leading to high loading of urea was provided by flash drying the suspension to obtain a solid nanohybrid. This nanohybrid with a nitrogen weight of 40% provides a platform for its slow release. Its potential application in agriculture to maintain yield and reduce the amount of urea used is demonstrated.Authors thank Hayleys Agro Ltd., Sri Lanka for initiating this research programme at SLINTEC and Nagarjuna Fertilizer and Chemical Ltd (NFCL), India for providing further support. Authors acknowledge Mr Sunanda Gunesekara of SLINTEC for assistance with scaling up the production process to enable the field trials. ARK acknowledges the financial support received from ICTPELETTRA Users Program, Trieste, Italy to conduct photoemission experiments at Materials Science beam line (MSB) and ELETTRA SRS on HA and urea coated HA samples. ARK further acknowledges Dr. R.G. Acres of MSB beam line for his extensive support to conduct photoemission experiments. We acknowledge the Department of Agriculture and Rice Research and Development Institute of Sri Lanka, in particular Dr Priyantha Weerasinghe, Mr D Sirisena and Dr Amitha Benthota for the assistance in carrying out pot and farmers filed trials. NFCL and Central Salt & Marine Chemicals Research Institute, Gujarat, India for TEM and BET analysis

    Pseudobrookite based heterostructures for efficient electrocatalytic hydrogen evolution

    No full text
    Synthesis of ultrathin heterostructures has received much attention in the recent past due to their unique physical and chemical properties. In this work, we report the synthesis of Fe2TiO5–TiO2 heterostructures using a simple hydrothermal technique employing natural ilmenite as the source. Hierarchically arranged nanostructures with interconnected nano-petals of thickness around 50 ​nm are obtained. The electrocatalytic properties of the synthesized Fe2TiO5–TiO2 heterostructures are enhanced following the cathodization technique. The observed enhancement in the synthesized materials’ electrocatalytic property can be attributed to the defect-rich Fe2-xTiO5-x-TiO2-x heterostructures. The current approach and technique discussed in this work offer a simple method to synthesize a nanostructured heterostructure material and create defects for enhancing electrocatalytic activity
    corecore