96 research outputs found
Progressive tilting of salt-bearing continental margins controls thin-skinned deformation
As a primary driving force, margin tilting is crucial for gravity-driven thin-skinned salt tectonics. We investigated how instant versus progressive margin tilting mechanisms influence salt tectonics using an analogue modeling setup where tilting rate could be controlled. Instant tilting resulted in initially high deformation rates, triggering widely distributed upslope extension and downslope contraction. Later, both the extensional and contractional domains migrated upslope as early extensional structures were successively deactivated, while deformation rates decreased exponentially. In contrast, progressive tilting led to downslope migration of the extensional domain by sequentially formed, long-lived normal faults. Contraction localized on a few, long-lived thrusts before migrating upslope. We attribute the distinct structural evolution of thin-skinned deformation, especially in the extensional domain, in the two tilting scenarios mainly to mechanical coupling between the brittle overburden and underlying viscous material. The coupling effect in turn is largely controlled by the deformation rate. By demonstrating the spatiotemporal variations of structural style and kinematic evolution associated with instant versus progressive tilting, we suggest that such variation is identifiable in nature and therefore can provide a new way to analyze margin tilting histories.publishedVersio
Overprinting translational domains in passive margin salt basins: insights from analogue modelling
Current models of gravitational tectonics on the structural styles of salt-influenced passive margins typically depict domains of upslope extension and corresponding downslope contraction separated by a mid-slope domain of translation that is rather undeformed. However, an undeformed translational domain is rarely observed in natural systems as extensional and contractional structures tend to interfere in the mid-slope area. In this study, we use sandbox analogue modelling analysed by digital image correlation (DIC) to investigate some of the factors that control the structural evolution of translational domains. As in nature, experimental deformation is driven by slowly increasing gravitational forces associated with continuous basal tilting. The results show that a translational domain persists throughout the basin evolution when the pre-kinematic layer is evenly distributed. However, a thin (1 mm in the experiment, 100 m in nature) pre-kinematic layer can render the translational domain relatively narrow compared to settings with a thicker (5 mm) pre-kinematic layer. In contrast, early differential sedimentary loading in the mid-slope area creates minibasins separated by salt diapirs overprinting the translational domain. Similarly, very low sedimentation rate (1 mm per day in the experiment, < 17 m Ma−1 in nature) in the early stage of the experiment results in a translational domain quickly overprinted by downslope migration of the extensional domain and upslope migration of the contractional domain. Our study suggests that the architecture of passive margin salt basins is closely linked to the pre- and syn-kinematic cover thickness. The translational domain, as an undeformed region in the supra-salt cover, is a transient feature and overprinted in passive margins with either low sedimentation rate or a heterogeneous sedimentation pattern.publishedVersio
Architectural style and quantification of a submarine channel-levee system located in a structurally complex area: Offshore nile delta
A Pleistocene channel-levee system located in a structurally complex area of the offshore Nile Delta is studied using a high-resolution three-dimensional (3D) seismic dataset. The seismic faciès and stacking patterns are characterized and quantitative analysis of its morphology (e.g., thalweg longitudinal profile, relief, width, and levee thickness) is utilized to understand the controls on channelized-flow processes and resultant architecture. Overall a change downslope from a degradational to aggradational style is observed, which can be related to the concave-up slope profile. In comparison to other channel-levee systems the Noor has a shorter length scale and displays a steepened thalweg slope. This is interpreted to be influenced by structural movements and an associated knickpoint, which controlled a change in flow processes (e.g., velocity, turbulence, and thickness) and the associated location of the canyon to channel-levee transition zone. An unusual feature of downslope levee thickening is observed. Instead of the normal reduction in overbank sedimentation downslope, it is suggested that structural modification causing relative steepening of seabed topography resulted in increased turbidity-current velocity, fluid volume discharge, and associated sediment load, which overcame the normal downslope loss of sediment due to overbank sedimentation. This study shows that architectural style is strongly linked to slope topography, and that structural movements can influence the slope profile and flow process, resulting in modification of the morphology and dimensions of channel-levee systems. Copyright © 2010, SEPM (Society for Sedimentary Geology)
How post-salt sediment flux and progradation rate influence salt tectonics on rifted margins: Insights from geodynamic modelling
Continental rifted margins can be associated with widespread and thick salt deposits, which are often formed during the final stages of rifting, prior to breakup. These salt-bearing margins are typically characterized by pronounced post-rift salt tectonics with variable and complex structural styles and evolution. We use a lithosphere-scale geodynamic numerical model to investigate the role of varying post-rift sediment fluxes and progradation rates on rifted margin salt tectonics. We focus on a single, intermediate, rifted margin type and salt basin geometry to explore scenarios with different: (i) constant and (ii) time-varying post-salt sediment fluxes. We demonstrate that these promote significant contrasts in the style and magnitude of salt tectonics in the proximal, transitional and distal margin domains. The differences are primarily controlled by the relationship between the rates of sediment progradation (Vprog) and salt flow (Vs). When Vprog > Vs, the salt is rapidly buried and both vertical and lateral salt flow are suppressed across the entire margin. When Vprog < Vs, the salt flows vertically and seaward faster than sediments prograde producing major diapirism in the proximal domain and major distal nappe advance, but only moderate overburden extension and distal diapirism. When Vprog ~ Vs, there is moderate proximal diapirism and distal nappe advance, but major updip extension and downdip shortening, which produces major distal diapirism. Modelling results are comparable to various natural systems and help improve our understanding of the controls and dynamics of salt tectonics along salt-bearing rifted margins.publishedVersio
Seismic expression of shear zones: Insights from 2-D point-spread-function based convolution modelling
Shear zones are common strain localization structures in the middle and lower crust and play a major role during orogeny, transcurrent movements and rifting alike. Our understanding of crustal deformation depends on our ability to recognize and map shear zones in the subsurface, yet the exact signatures of shear zones in seismic reflection data are not well constrained. To advance our understanding, we simulate how three outcrop examples of shear zones (Holsnøy - Norway, Cap de Creus - Spain, Borborema - Brazil) would look in different types of seismic reflection data using 2-D point-spread-function (PSF)-based convolution modelling, where PSF is the elementary response of diffraction points in seismic imaging. We explore how geological properties (e.g. shear zone size and dip) and imaging effects (e.g. frequency, resolution, illumination) control the seismic signatures of shear zones. Our models show three consistent seismic characteristics of shear zones: (1) multiple, inclined reflections, (2) converging reflections, and (3) cross-cutting reflections that can help interpreters recognize these structures with confidence.publishedVersio
Links Between Faulting, Topography, and Sediment Production During Continental Rifting: Insights From Coupled Surface Process, Thermomechanical Modeling
Continental rifts form by extension, and their subsequent evolution depends on the tectonic and climatic boundary conditions. We investigate how faulting, topography, and the evolution of the sediment flux during rifting are affected by these boundary conditions, in particular whether it is possible to correlate tectonic activity, topography, and sediment flux on long timescales (40 Myr). We use a thermomechanical model coupled with a landscape evolution model and present a series of 14 models, testing the sensitivity of the models to crustal strength, extension rate, and fluvial erodibility. The degree of strain localization drives the structural evolution of the modeled rifts: slow extension, high crustal strength, and efficient surface processes promote a high degree of strain localization, resulting in fewer active faults with larger offset. Overall, the magnitude of sediment production correlates with the degree of strain localization. In case of unchanged erosional power and similar amount of extension, systems with slower extension produce more sediment owing to a stronger positive feedback between erosion and fault offset. We observe a characteristic sequence of events, reflecting the morpho-tectonic evolution of rifts: the highest rock uplift rates are observed before the maximum elevation, and the highest sediment flux postdates the peak in elevation. Our results indicate that for natural systems, the evolution of the sediment flux is a good proxy for the evolution of topography, and that a time lag of 2–5 Myr between the peaks in main tectonic activity and sediment flux can exist.publishedVersio
The role of structural inheritance in the development of high-displacement crustal faults in the necking domain of rifted margins: The Klakk Fault Complex, Frøya High, offshore mid-Norway
The role of inherited structures during the development of normal faults in continental rifts and proximal domains of passive margins have been extensively studied. Few studies, however, have a focus on deciphering the role of inheritance in the development of high-displacement (>10 km), low-angle (25 km) is present during rifting.publishedVersio
Coupling Crustal-Scale Rift Architecture With Passive Margin Salt Tectonics: A Geodynamic Modeling Approach
Continental rifted margins are often associated with widespread, thick evaporite (i.e., salt) deposits and pronounced salt tectonics. The majority of salt basins formed during the latest stages of rifting, prior to continental breakup. We use 2D thermo-mechanical finite element modeling of lithospheric extension to investigate the interplay between rifted margin architecture, late syn-rift salt deposition, and post-rift salt tectonics. We focus on four different types of continental margins: (a) narrow, (b) intermediate, (c) wide, and (d) ultra-wide margins. We evaluate the: (a) interplay between laterally variable syn-rift extension, salt deposition and salt tectonics, (b) influence of syn-rift basin architecture on post-rift salt flow, (c) spatial and temporal distribution of salt-related structural domains, and (d) contrasting styles of salt tectonics for different margin types. Narrow and intermediate margins form partially isolated salt basins associated with prominent base-salt relief, limited translation but significant diapirism, and minibasin development. Wide and ultra-wide margins form wide salt basins with subtle base-salt relief that results in significant seaward salt expulsion and overburden translation. These wide margins demonstrate significant updip extension with the development of post-rift normal faults and rollovers, mid-margin translation associated with complex diapirism and downdip diapir shortening. All margins contain a distal salt nappe that varies in width and complexity. We also test the effect of different salt viscosities, relative post-salt progradation rates, and pre-salt sediment thicknesses. The results are comparable to several examples of salt-bearing rifted margins and improve our understanding of their dynamics and on the controls on their salt tectonics variability.publishedVersio
Global scale analysis on the extent of river channel belts
Rivers form channel belts that encompass the area of the river channel and its associated levees, bars, splays and overbank landforms. The channel belt is critical for understanding the physical river evolution through time, predicting river behavior and management of freshwater resources. To date, there is no global-scale, quantitative study of the extent of river channel belts. Here we show, based on a pattern recognition algorithm, the global surface area of channel belts at an approximate 1 km resolution is 30.5 × 105 km2, seven times larger than the extent of river channels. We find 52% of river channels associated with the channel belts have a multi-threaded planform with the remaining 48% being single-threaded by surface area. The global channel belt (GCB) datasets provide new methods for high-resolution global scale landform classifications and for incorporating the channel belt into flood mitigation, freshwater budgets, ecosystem accounting and biogeochemical analyses.publishedVersio
Tectono-sedimentary evolution of high-displacement crustal-scale normal faults and basement highs on rifted margins: Klakk Fault Complex and Frøya High, Mid-Norwegian Margin
Crustal-scale high-displacement (>10 km) normal faults are not captured in existing tectono-sedimentary models of rift basins. We used 2D and 3D seismic reflection and well data to perform a structural and source-to-sink analysis of the southern part of the Klakk Fault Complex and the western part of the Vingleia Fault Complex, Mid-Norwegian rifted margin. The north–south trending Klakk Fault Complex has a zig-zag to sinuous plan-view geometry, forming a series of structural recesses and salients along strike. In cross-section, the fault complex has a listric to convex-up or low-angle planar geometry with displacements above 20 km. This fault complex exhumed basement highs, the Frøya High and Sklinna Ridge, in its footwall and created a series of supradetachment basins, for example, the Rås Basin, in its hanging wall. In contrast, the northeast-southwest trending Vingleia Fault Complex has a zig-zag geometry in plan view and planar to listric geometry in cross-section and displacement of up to 5 km. This fault has the Frøya High in its footwall and the southern Halten Terrace in its hanging wall. Restoration of selected structural cross-sections shows a prominent fault-parallel ridge, up to 15 km east of the Klakk Fault Complex interpreted as a palaeodrainage divide. This divide separates steep drainages developed along the west-dipping footwall scarp to the Klakk Fault Complex, from broader, gentler east-dipping drainages up to ca. 10 km long developed on a back-tilted dip slopes along the eastern side of the Frøya High and Sklinna Ridge. Progressive headward erosion of active flank catchments was enhanced around topographically elevated structural salients to the point of capturing previous dip-slope-directed drainages during the earliest Cretaceous. A network of submarine canyons develop down-dip of the drainage catchments along the Klakk Fault Complex scarp, whose geometries and length are controlled by their location with respect to the structural salients or recesses, and the presence of fault terraces. The middle Jurassic-earliest Cretaceous synrift deposits form two seismic sequences that are filled with five distinctive seismic facies that record the evolution from a linked normal fault during rift climax to a high-displacement stage. During the high displacement stage, exhumed local continental core complexes formed structural salients, separated along strike by structural recesses at the heads of supradetachment basins. Key elements of the high-displacement fault stage include (i) the development of structural salients at sites of rift climax displacement maxima, (ii) development of supradetachment basins in rift climax displacement minima and (iii) migration of major depocentres away from the centre of rift climax fault segments. We synthesise these observations into a generic tectono-sedimentary model for high-displacement faults.publishedVersio
- …
