38 research outputs found

    Phasevarion Mediated Epigenetic Gene Regulation in Helicobacter pylori

    Get PDF
    Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae and pathogenic Neisseria, the random switching of the modA gene, associated with a phase-variable type III restriction modification (R-M) system, controls expression of a phase-variable regulon of genes (a “phasevarion”), via differential methylation of the genome in the modA ON and OFF states. Phase-variable type III R-M systems are also found in Helicobacter pylori, suggesting that phasevarions may also exist in this key human pathogen. Phylogenetic studies on the phase-variable type III modH gene revealed that there are 17 distinct alleles in H. pylori, which differ only in their DNA recognition domain. One of the most commonly found alleles was modH5 (16% of isolates). Microarray analysis comparing the wild-type P12modH5 ON strain to a P12ΔmodH5 mutant revealed that six genes were either up- or down-regulated, and some were virulence-associated. These included flaA, which encodes a flagella protein important in motility and hopG, an outer membrane protein essential for colonization and associated with gastric cancer. This study provides the first evidence of this epigenetic mechanism of gene expression in H. pylori. Characterisation of H. pylori modH phasevarions to define stable immunological targets will be essential for vaccine development and may also contribute to understanding H. pylori pathogenesis

    Origin of the Diversity in DNA Recognition Domains in Phasevarion Associated modA Genes of Pathogenic Neisseria and Haemophilus influenzae

    Get PDF
    Phase variable restriction-modification (R-M) systems have been identified in a range of pathogenic bacteria. In some it has been demonstrated that the random switching of the mod (DNA methyltransferase) gene mediates the coordinated expression of multiple genes and constitutes a phasevarion (phase variable regulon). ModA of Neisseria and Haemophilus influenzae contain a highly variable, DNA recognition domain (DRD) that defines the target sequence that is modified by methylation and is used to define modA alleles. 18 distinct modA alleles have been identified in H. influenzae and the pathogenic Neisseria. To determine the origin of DRD variability, the 18 modA DRDs were used to search the available databases for similar sequences. Significant matches were identified between several modA alleles and mod gene from distinct bacterial species, indicating one source of the DRD variability was via horizontal gene transfer. Comparison of DRD sequences revealed significant mosaicism, indicating exchange between the Neisseria and H. influenzae modA alleles. Regions of high inter- and intra-allele similarity indicate that some modA alleles had undergone recombination more frequently than others, generating further diversity. Furthermore, the DRD from some modA alleles, such as modA12, have been transferred en bloc to replace the DRD from different modA alleles

    Apple software for analysis of the size of restriction fragments.

    No full text
    A software package that has been specifically written for an Apple II microcomputer is described. The program, DNAFRAG, is used for the determination of the sizes of the DNA restriction fragments that are observed in electrophoresis experiments and is based on a program previously reported by Duggleby et al., 1981. DNAFRAG allows the operator to use standard sets of fragment sizes that are stored on a floppy disk and to add new sets of standards to that disk. In addition, the program has an improved capacity to manipulate data once it has been entered into the program

    Bacteriological water testing in remote localities

    No full text

    Visualizing the Translocation and Localization of Bacterial Type III Effector Proteins by Using a Genetically Encoded Reporter System

    Get PDF
    Bacterial Type Three Secretion System (T3SS) effector proteins are critical determinants of infection for many animal and plant pathogens. However, monitoring of the translocation and delivery of these important virulence determinants has proved to be technically challenging. Here, we used a genetically engineered LOV (light-oxygen-voltage) sensing domain derivative to monitor the expression, translocation and localization of bacterial T3SS effectors. We found the Escherichia coli O157:H7 bacterial effector fusion Tir-LOV was functional following its translocation and localized to the host cell membrane in discrete foci demonstrating that LOV-based reporters can be used to visualize the effector translocation with minimal manipulation and interference. Further evidence for the versatility of the reporter was demonstrated by fusing LOV to the C-terminus of the Shigella flexneri effector IpaB. IpaB-LOV localized preferentially at bacterial poles before translocation. We observed the rapid translocation of IpaB-LOV in a T3SS-dependent manner into host cells, where it localized at the bacterial entry site within membrane ruffles
    corecore