8,497 research outputs found

    Energy-momentum tensor in thermal strong-field QED with unstable vacuum

    Full text link
    The mean value of the one-loop energy-momentum tensor in thermal QED with electric-like background that creates particles from vacuum is calculated. The problem differes essentially from calculations of effective actions (similar to that of Heisenberg--Euler) in backgrounds that do not violate the stability of vacuum. The role of a constant electric background in the violation of both the stability of vacuum and the thermal character of particle distribution is investigated. Restrictions on the electric field and its duration under which one can neglect the back-reaction of created particles are established.Comment: 7 pages, Talk presented at Workshop "Quantum Field Theory under the Influence of External Conditions", Leipzig, September 17-21, 2007; introduction extended, version accepted for publication in J.Phys.

    Quadratic perturbations of quadratic codimension-four centers

    Get PDF
    We study the stratum in the set of all quadratic differential systems x˙=P2(x,y),y˙=Q2(x,y)\dot{x}=P_2(x,y), \dot{y}=Q_2(x,y) with a center, known as the codimension-four case Q4Q_4. It has a center and a node and a rational first integral. The limit cycles under small quadratic perturbations in the system are determined by the zeros of the first Poincar\'e-Pontryagin-Melnikov integral II. We show that the orbits of the unperturbed system are elliptic curves, and II is a complete elliptic integral. Then using Picard-Fuchs equations and the Petrov's method (based on the argument principle), we set an upper bound of eight for the number of limit cycles produced from the period annulus around the center

    Regularization, renormalization and consistency conditions in QED with x-electric potential steps

    Full text link
    The present article is an important addition to the nonperturbative formulation of QED with x-steps presented by Gavrilov and Gitman in Phys. Rev. D. 93, 045002 (2016). Here we propose a new renormalization and volume regularization procedures which allow one to calculate and distinguish physical parts of different matrix elements of operators of the current and of the energy-momentum tensor, at the same time relating the latter quantities with characteristics of the vacuum instability. For this purpose, a modified inner product and a parameter {\tau} of the regularization are introduced. The latter parameter can be fixed using physical considerations. In the Klein zone this parameter can be interpreted as the time of the observation of the pair production effect. In the refined formulation of QED with x-steps, we succeeded to consider the backreaction problem. In the case of an uniform electric field E confined between two capacitor plates separated by a finite distance L, we see that the smallness of the backreaction implies a restriction (the consistency condition) on the product EL from above.Comment: 33 pages, version accepted for publication in Eur. Phys. J.

    Vacuum instability in slowly varying electric fields

    Get PDF
    Nonperturbative methods have been well-developed for QED with the so-called t-electric potential steps. In this case a calculation technique is based on the existence of specific exact solutions (in and out solutions) of the Dirac equation. However, there are only few cases when such solutions are known. Here, we demonstrate that for t-electric potential steps slowly varying with time there exist physically reasonable approximations that maintain the nonperturbative character of QED calculations even in the absence of the exact solutions. Defining the slowly varying regime in general terms, we can observe a universal character of vacuum effects caused by a strong electric field. In the present article, we find universal approximate representations for the total density of created pairs and vacuum mean values of the current density and energy-momentum tensor that hold true for arbitrary t-electric potential steps slowly varying with time. These representations do not require knowledge of the corresponding solutions of the Dirac equation, they have a form of simple functionals of a given slowly varying electric field. We establish relations of these representations with leading terms of the derivative expansion approximation. These results allow one to formulate some semiclassical approximations that are not restricted by the smallness of differential mean numbers of created pairs.Comment: 37 pages, version accepted for publication in Phys. Rev. D. arXiv admin note: substantial text overlap with arXiv:1512.0128
    corecore