1,318 research outputs found

    Nutritional status, growth and disease management in children with single and dual diagnosis of type 1 diabetes mellitus and coeliac disease

    Get PDF
    Background: The consequences of subclinical coeliac disease (CD) in Type 1 diabetes mellitus (T1DM) remain unclear. We looked at growth, anthropometry and disease management in children with dual diagnosis (T1DM + CD) before and after CD diagnosis.<p></p> Methods: Anthropometry, glycated haemoglobin (HbA1c) and IgA tissue transglutaminase (tTg) were collected prior to, and following CD diagnosis in 23 children with T1DM + CD. This group was matched for demographics, T1DM duration, age at CD diagnosis and at T1DM onset with 23 CD and 44 T1DM controls.<p></p> Results: No differences in growth or anthropometry were found between children with T1DM + CD and controls at any time point. Children with T1DM + CD, had higher BMI z-score two years prior to, than at CD diagnosis (p <0.001). BMI z-score change one year prior to CD diagnosis was lower in the T1DM + CD than the T1DM group (p = 0.009). At two years, height velocity and change in BMI z-scores were similar in all groups. No differences were observed in HbA1c between the T1DM + CD and T1DM groups before or after CD diagnosis. More children with T1DM + CD had raised tTg levels one year after CD diagnosis than CD controls (CDx to CDx + 1 yr; T1DM + CD: 100% to 71%, p = 0.180 and CD: 100% to 45%, p < 0.001); by two years there was no difference.<p></p> Conclusions: No major nutrition or growth deficits were observed in children with T1DM + CD. CD diagnosis does not impact on T1DM glycaemic control. CD specific serology was comparable to children with single CD, but those with dual diagnosis may need more time to adjust to gluten free diet

    Conservation and divergence of gene families encoding components of innate immune response systems in zebrafish

    Get PDF
    BACKGROUND: The zebrafish has become a widely used model to study disease resistance and immunity. Although the genes encoding many components of immune signaling pathways have been found in teleost fish, it is not clear whether all components are present or whether the complexity of the signaling mechanisms employed by mammals is similar in fish. RESULTS: We searched the genomes of the zebrafish Danio rerio and two pufferfish for genes encoding components of the Toll-like receptor and interferon signaling pathways, the NLR (NACHT-domain and leucine rich repeat containing) protein family, and related proteins. We find that most of the components known in mammals are also present in fish, with clearly recognizable orthologous relationships. The class II cytokines and their receptors have diverged extensively, obscuring orthologies, but the number of receptors is similar in all species analyzed. In the family of the NLR proteins, the canonical members are conserved. We also found a conserved NACHT-domain protein with WD40 repeats that had previously not been described in mammals. Additionally, we have identified in each of the three fish a large species-specific subgroup of NLR proteins that contain a novel amino-terminal domain that is not found in mammalian genomes. CONCLUSION: The main innate immune signaling pathways are conserved in mammals and teleost fish. Whereas the components that act downstream of the receptors are highly conserved, with orthologous sets of genes in mammals and teleosts, components that are known or assumed to interact with pathogens are more divergent and have undergone lineage-specific expansions

    Prospectus, March 13, 2008

    Get PDF
    https://spark.parkland.edu/prospectus_2008/1006/thumbnail.jp

    Parallel solution of nonlinear contingency- constrained network problems

    Get PDF
    Abstract This paper presents a nonlinear stochastic programming formulation for a large-scale contingency-constrained optimal power flow problem. Using a rectangular IV formulation to model AC power flow in the transmission network, we construct a nonlinear, multi-scenario optimization formulation where each scenario considers failure an individual transmission element. Given the number of potential failures in the network, these problems are very large; yet need to be solved rapidly. In this paper, we demonstrate that this multi-scenario problem can be solved quickly using a parallel decomposition approach based on nonlinear interior-point methods. Parallel and serial timing results are shown using a test example from Matpower, a MATLAB-based framework for power flow

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    • …
    corecore