15 research outputs found

    Simulación de la intercalación de Litio en materiales carbonosos a partir de modelos atomísticos : aplicación a sistemas experimentales

    Get PDF
    Tesis (Doctor en Ciencias Químicas) - - Universidad Nacional de Córdoba. Facultad de Ciencias Químicas, 2019Antes de comenzar a hablar de las baterías de ion-litio, tema central de la presente tesis, es importante introducir de forma breve la definición de batería y su clasificación, así como los fundamentos básicos de su funcionamiento. Uno de los objetivos más ambiciosos y necesarios del mundo actual es encontrar alternativas baratas y eficientes para generar y almacenar energía eléctrica, de modo de reducir la ingente cantidad de gases de efecto invernadero que se liberan a la atmósfera y, de modo simultáneo, aliviar la presión sobre la demanda de combustibles fósiles, principal causa humana de la producción de este efecto. Asimismo, el mundo está sufriendo un permanente crecimiento en el consumo de energía eléctrica que, bajo las actuales circunstancias, agrava la contaminación ambiental, sometiendo al planeta a un estrés climático extremo [1]. Este contexto impone la necesidad de generar energías renovables, limpias y con criterios de sostenibilidad. Como la generación de energías renovables (eólica y solar) en general tiene una baja previsibilidad en escalas cortas de tiempo, los sistemas de almacenamiento más eficientes surgen como la mejor alternativa para afrontar este problema. En este sentido, la investigación en el campo de los dispositivos de almacenamiento de energía juega un rol preponderante para el desarrollo de un paradigma energético que incorpore criterios de sostenibilidad. Hay muchas formas de almacenar energía. Esto puede ser energía nuclear, mecánica, química, térmica, eléctrica o biológica. Una vez almacenada la energía en alguna de sus formas, esta puede ser transformada, por ejemplo, como energía eléctrica, cuando se la requiera. En tal sentido, una manera de clasificar los dispositivos de almacenamiento de energía eléctrica es según el tipo de energía acumulada (Esquema 1.1). Se puede citar a modo de ejemplo las plantas hidroeléctricas, que convierten la energía mecánica del agua en electricidad, o los superconductores magnéticos, que almacenan energía a través de un campo electromagnético. Las baterías se encuentran dentro de esta clasificación (Esquema 1.1) como un dispositivo que almacena energía de forma electroquímica, ya que convierten la energía química contenida en sus materiales activos directamente en energía eléctrica a través de una reacción de óxido-reducción.2021-12-31Gavilán Arriazu, Edgardo Maximiliano. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas; Argentina.Oviedo, Oscar Alejandro. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional; Argentina.Pinto, Oscar Alejandro. Universidad Nacional de Santiago del Estero. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Bionanotecnología del NOA; Argentina.Leiva, Ezequiel Pedro Marcos. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.Oliva, Fabiana Yolanda. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina.Cannas, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina

    Electrosorption of a modified electrode in the vicinity of phase transition: A Monte Carlo study

    Get PDF
    We present a Monte Carlo study for the electrosorption of an electroactive species on a modified electrode. The surface of the electrode is modified by the irreversible adsorption of a non-electroactive species which is able to block a percentage of the adsorption sites. This generates an electrode with variable connectivity sites. A second species, electroactive in this case, is adsorbed in surface vacancies and can interact repulsively with itself. In particular, we are interested in the analysis of the effect of the non-electroactive species near of critical regime, where the c(2 × 2) structure is formed. Lattice-gas models and Monte Carlo simulations in the Gran Canonical Ensemble are used. The analysis conducted is based on the study of voltammograms, order parameters, isotherms, configurational entropy per site, at several values of energies and coverage degrees of the non-electroactive species.Fil: Gavilán Arriazu, Edgardo Maximiliano. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: Pinto, Oscar Alejandro. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentin

    Fractional and integer stages of lithium ion-graphite systems: The role of electrostatic and elastic contributions

    Get PDF
    In the present work, we analyze the hot topic of integer and fractional stages of lithium-ion batteries by using Monte Carlo simulations. While fractional stages have been demonstrated through several experimental, simulation and theoretical measurements, in other experimental techniques, such as electrochemical ones, there is no evidence for them. In previous work, we have analyzed the thermodynamics and kinetics of lithium-ion intercalation using a potential based on empirical parameterization, where multiple stages (integer and fractional) were found and analyzed. The present simulations suggest that if we consider repulsive elastic interactions in addition to electrostatic ones, the Hamiltonian symmetry is broken and there is no evidence for fractional stages. The physical origin of these repulsive interactions is assigned to the increasing graphite layer separation during lithium-ion intercalation. In the light of these simulations, selected experimental data are revisited, validating the presented novel parameterization. The parametrization used here can be used for other kinds of intercalation compounds, such as those involving Na or K.Fil: Gavilán Arriazu, Edgardo Maximiliano. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: Hümöller, Juan Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Pinto, Oscar Alejandro. Universidad Nacional de Santiago del Estero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: De Mishima, B. A. López. Universidad Nacional de Santiago del Estero; ArgentinaFil: Leiva, Ezequiel Pedro M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Oviedo, Oscar Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentin

    Effect of temperature on the kinetics of electrochemical insertion of li-ions into a graphite electrode studied by kinetic Monte Carlo

    Get PDF
    The effect of temperature on the kinetics of electrochemical insertion/removal of lithium in graphite is analyzed by kinetic Monte Carlo methods. Different electrochemical techniques are simulated at different temperatures and responses are compared with experimental results. Simulated voltammograms show, similarly to experiment, how the behavior of the system becomes closer to equilibrium as temperature increases. Calculated chronoamperometric profiles show a different qualitative behavior in the current at different temperatures, especially in the Cottrell representation peaks, explained in terms of the relative importance of diffusive versus charge transfer processes at different temperatures. Results at room temperature are in good agreement with experiment, and we further evaluate trends at elevated temperature that have not yet been described in experimental or theoretical works. Exchange current densities for different degrees of lithium intercalation at different temperatures are predicted using potentiostatic simulations, showing an Arrhenius-type relationship. The dependence of the exchange current on electrolyte composition is simulated by investigating the effect of different activation energy barriers at different temperatures. The influence of temperature on diffusion coefficients as a function of lithiation fraction in graphite is simulated and related to Arrhenius plots, explaining the experimentally observed changes in diffusion phenomena with lithium composition and temperature.Fil: Gavilán Arriazu, Edgardo Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional; ArgentinaFil: Mercer, Michael. Centre National de la Recherche Scientifique; Francia. Lancaster University. Department of Chemistry; Reino Unido. ALISTORE European Research Institute; Francia. The Faraday Institution; Reino UnidoFil: Pinto, Oscar Alejandro. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: Oviedo, Oscar Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Barraco Diaz, Daniel Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Hoster, Harry Ernst. Centre National de la Recherche Scientifique; Francia. Lancaster University. Department of Chemistry; Reino Unido. ALISTORE European Research Institute; Francia. The Faraday Institution; Reino UnidoFil: Leiva, Ezequiel Pedro M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional; Argentin

    Numerical simulations of cyclic voltammetry for lithium-ion intercalation in nanosized systems: Finiteness of diffusion versus electrode kinetics

    Get PDF
    The voltammetric behavior of Li+ intercalation/deintercalation in/from LiMn2O4 thin films and single particles is simulated, supporting very recent experimental results. Experiments and calculations both show that particle size and geometry are crucial for the electrochemical response. A remarkable outcome of this research is that higher potential sweep rates, of the order of several millivolts per second, may be used to characterize nanoparticles by voltammetry sweeps, as compared with macroscopic systems. This is in line with previous conclusions drawn for related single particle systems using kinetic Monte Carlo simulations. The impact of electrode kinetics and finite space diffusion on the reversibility of the process and the finiteness of the diffusion in ion Li / LiMn2O4 (de)intercalation is also discussed in terms of preexisting modeling.Fil: Gavilán Arriazu, Edgardo Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Mercer, M.P.. Lancaster University; Reino UnidoFil: Pinto, Oscar Alejandro. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: Oviedo, Oscar Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Barraco Diaz, Daniel Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Hoster, H. E.. Lancaster University; Reino UnidoFil: Leiva, Ezequiel Pedro M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentin

    Kinetic Monte Carlo applied to the electrochemical study of the Li-ion graphite system

    Get PDF
    To delve deeper into the kinetics involved in the staging phenomena of lithium insertion into graphite, it is necessary to develop theoretical models that emulate the physical phenomenon involved. In the present work kinetic Monte Carlo simulations are used to carry out a thorough analysis of the Li-ion graphite system, with the twofold aim of providing atomistic support for interpretations based on several experimental electrochemical techniques commonly used in the laboratory and of making theoretical predictions for future experimental work. Cyclic voltammograms and chronoamperometric transients are obtained, and diffusion coefficients and exchange current densities are calculated at different Li loadings of graphite. These results are compared with selected experimental data from the literature. In this way, there emerge details that cannot be observed in ordinary experiments due to methodological/instrumental limitations. For example, it is found that chronoamperometric responses are different for intercalation and deintercalation, the latter being a faster process. The reason why these phenomena are different is revealed, supporting and widening experimental assumptions. The present results also suggest that the intrinsic hysteresis observed in experimental work (and in simulations) is due to kinetic factors.Fil: Gavilán Arriazu, Edgardo Maximiliano. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional; ArgentinaFil: Pinto, Oscar Alejandro. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: López de Mishima, Beatriz A.. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: Barraco Diaz, Daniel Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Oviedo, Oscar Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Leiva, Ezequiel Pedro M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentin

    Structural surface and thermodynamics analysis of nanoparticles with defects

    Get PDF
    In this work, we analyze the surface structure and thermodynamics regarding the decoration of nanoparticles with defects, using statistical calculations and Monte Carlo simulations in a complementary way. The main objective is to design and analyze a simple model as a general tool that can help the interpretation of results from more specific and complex models. In particular, we show how the presence of surface defects of the same nature as the nanoparticle induces different site distributions depending on different factors such as the density of defects, and the geometry and size of the considered nanoparticle. These distributions are analyzed for icosahedron nanoparticles of different sizes and densities of defects, and then are linked with Monte Carlo simulations to interpret the thermodynamic effects of the modified surfaces. Under low temperature or strong attractive interaction conditions, the details emerging from the defective surfaces were manifested as wide plateaus in the isotherm and peaks in the compressibility of the adlayer. Different situations were observed as the temperature increases, since the structural details gradually disappear from the thermodynamic measurements, until plateaus and compressibility peaks completely merge under high enough temperature conditions. Adsorption site distribution, adsorption isotherms, energy per site, compressibility of the adlayer, and other relevant properties are analyzed as a function of the number of defects and the chemical potential. In addition to the icosahedron, cuboctahedron and truncated octahedron geometries are also analyzed.Fil: Gavilán Arriazu, Edgardo Maximiliano. Universidad Nacional de Santiago del Estero; Argentina. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: Gimenez, Rodrigo Esteban. Universidad Nacional de Santiago del Estero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Centro de Investigación en Biofísica Aplicada y Alimentos. - Universidad Nacional de Santiago del Estero. Centro de Investigación en Biofísica Aplicada y Alimentos; ArgentinaFil: Pinto, Oscar Alejandro. Universidad Nacional de Santiago del Estero; Argentina. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentin

    Electrosorption of a repulsive binary mixture on modified electrodes

    No full text
    Standard Monte Carlo simulation was used in the Grand Canonical Ensemble to study the electrosorption of a repulsive binary mixture on a modified electrode surface, to identify and analyze the individual contribution of each species to the total current signal. The electrode is modified with the deposition of impurities, whose function is to block a percentage of the adsorption sites. In this electrode two electroactive species can be deposited and transfer charge in the same working potential window. Thermodynamics and voltammetry are analyzed in different energy scenarios. Adsorption isotherms, partial and total currents were calculated and was analyzed and discussed in terms of surface fluctuations and low temperature phases formed in the systemFil: Gimenez, Rodrigo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Centro de Investigación en Biofísica Aplicada y Alimentos. - Universidad Nacional de Santiago del Estero. Centro de Investigación en Biofísica Aplicada y Alimentos; ArgentinaFil: Gavilán Arriazu, Edgardo Maximiliano. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: Pinto, Oscar Alejandro. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentin

    On how interactions influence kinetic limitations in alkali-ion batteries. Application to Li-ion intercalation into graphite through voltammetric experiments

    No full text
    Here, we report on a novel study for battery application regarding the impact of interactions in charge transfer and diffusional features in finite-size systems. An easy way to represent these features is the construction of a map called zone diagram for voltammetry simulations, where different domains are related with a characteristic charge transfer-diffusional limitation. This is particularly relevant for alkali-ion intercalation into hosts, since interactions between inserted ions have demonstrated to have a strong influence on the electrochemical behaviour of these systems. The Frumkin isotherm is used here as a general model to understand the simplest scenarios, which introduces interactions between inserted particles in their thermodynamic descriptions. We show how the impact of these interactions becomes more evident for systems that present a reversible charge transfer. On the contrary, for irreversible reactions, features tend to become independent of interactions. Finally, we apply the methodology to understand some features of Li-ion intercalation in graphite films. It comes out that for this system, a surface wave (adsorption like) behaviour could only be reached in experiments lasting more than a year. This explains the large hysteresis found in experiments. We also constructed a sweep rate-film thickness zone diagram, to present the results in a more straightforward fashion to experimentalists.Fil: Gavilán Arriazu, Edgardo Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Barraco Diaz, Daniel Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Leiva, Ezequiel Pedro M.. Universidad Nacional de Córdoba. Facultad de Cs.químicas. Departamento de Química Teórica y Computacional; Argentin

    Electrochemical behavior of a typical redox mediator on a modified electrode surface: Experiment and computer simulations

    No full text
    This paper describes the study of a redox species electrosorption on a modified electrode by experimental measurements and computer simulation. The propose model is based on the fact that charges are transferred to the electrode when an electroactive species is adsorbed on its surface. The electrode surface is modified by the irreversible adsorption of a non-electroactive species, which blocks a percentage of the adsorption sites. Hence, the electroactive species can only be adsorbed on the surface vacancies, and, when this phenomenon occurs, interact laterally with the non-electroactive one. Lattice-gas models and Monte Carlo simulations in the Gran Canonical Ensemble are used. The analysis conducted is based on the study of adsorption isotherms and voltammograms, for several values of energies and adsorption degrees of the non-electroactive species. In the case of experimental measurements, an artificial clay (Laponite®) represents the non-electroactive species while the redox probe Fe(CN)6 4- is the electroactive one. The results obtained by the proposed model are compared with experimental voltammograms.Fil: Gavilán Arriazu, Edgardo Maximiliano. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: Paz Zanini, Veronica Irene. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: Gulotta, Florencia Alejandra. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: Araujo, Virginia Maria. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: Pinto, Oscar Alejandro. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentin
    corecore