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Highlights: 

 Monte Carlo simulation was used to study the electrosorption of a 

electroactive specie on the surface of a modified electrode. 

 This model is able to reproduce the main physico-chemical behavior of a on electroactive 

specie on a modified electrode surface in the presence of a non electroactive species. 

 The analysis was based on the study of voltammograms, order parameters, isotherms, 

configurational entropy per site, in several possible scenarios at different energies and 

degrees of coverage of non-electroactive species. 
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Abstract 

We present a Monte Carlo study for the electrosorption of an electroactive species on a 

modified electrode. The surface of the electrode is modified by the irreversible adsorption of a 

non-electroactive species which is able to block a percentage of the adsorption sites. This 

generates an electrode with variable connectivity sites.  A second species, electroactive in this 

case, is adsorbed in surface vacancies and can interact repulsively with itself. In particular, we 

are interested in the analysis of the effect of the non-electroactive species near of critical 

regime, where the c(2x2) structure is formed.  Lattice-gas models and Monte Carlo 

simulations in the Gran Canonical Ensemble are used. The analysis conducted is based on the 

study of voltammograms, order parameters, isotherms, configurational entropy per site, at 

several values of energies and coverage degrees of the non-electroactive species.  

 

Keyword: Monte Carlo simulation; lattice-gas model; modified electrode surface; 

voltammograms, electrosorption. 

 

1. Introduction 

 In the last years, computational models have been an important tool to understand 

physicochemical process that occurs in interfaces. The possibility of manipulate parameters 

gives to the modeling and simulation methods an added value to study and understand 

complex systems that cannot be approached in a practical way. With these tools, 

electrochemical processes has been studied applying various methodologies, such as: 

mathematical equations and stochastic and digital simulations, just to name a few [1–6] 

However, some aspects of the problem remain unexplored, like critical behavior and charge 

transfer at modified electrodes. 
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  Standard Monte Carlo (MC) simulation [7–9] is one of the most commonly used 

strategies to understand phenomena occurring on surfaces [10, 11] and study electrochemical 

processes [12, 13]. The electrode surface is easily mimicked by a lattice-gas model where 

each site of the lattice is a position of the crystalline structure of the substrate where an 

electroactive species can be adsorbed [14]. For example, with these techniques, the adsorption 

of bromide on Ag(100) has been studied and contrasted with experimental data, given very 

acceptable results [15–18].  

 When an electroactive species, with lateral interactions, is adsorbed on the electrode 

surface, several interesting phenomena occur. For example, it was observed experimentally 

the formation of critical clusters of ordered 2-D adsorbed layers in the underpotential region 

in Ag(hkl) on Pb2+  [19]. Other phenomenon observed was the deposition of bromide on an 

Ag(001) electrode which shows a second order phase transition and form a c(2x2) ordered 

structure. This was investigated using in situ x-ray scattering methods [20]. The c(2x2) 

ordered structure was observed in other experimental systems [21].  In  [22] the authors relate, 

in the critical regime, the inflexion point of the isotherms with the current peak of 

voltammograms for lead deposition on silver single crystal surfaces, this link the surface 

coverage with the charge transference to the electrode.   

 The modification of electrode surfaces is an easy way to emulate amorphous solids, 

where the connectivity of each adsorption site varies. Thus, the electrosorption phenomenon 

in modified surfaces is equivalent to the adsorption on heterogeneous solid surfaces [23–25]  

In References [26] and [27] heterogeneity was introduced by random dilution of bonds 

between the particles adsorbed at nearest-neighbor sites in a triangular lattice, with repulsive 

interactions. The authors claim that the order is destroyed at very low bond dilutions and the 

critical temperatures of the transitions decrease with the degree of disorder.  
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Furthermore, the modification of the substrate has practical applications. In 

electrocatalysis and heterogeneous catalysis occurring at surfaces, is well known the influence 

of the SBE’s (site blocking elements) in the catalytic process, acting as an element who turn 

off the active sites and could accelerate or decelerate the reaction rate [28–30].  In reference 

[31] the SBE has been applied as an indirect method to understand the type of oxygen 

interaction with a Pt(111) electrode surface. Following the catalytic phenomena, Leiva [32] 

proposed a model to explain how the nature and the surface coverage of adatoms affect the 

catalytic activity. Metal substitution (point defects) in spinel cathodes for lithium-ion batteries 

stabilize the structure, improving the cycle life [33]. The influence of this point defects in a 

spinel cathode was addressed with MC simulations [34]. 

There are several electrochemical techniques applied to obtain surfaces data, this is 

crucial to understand the state of a modified electrode. Voltammetry is maybe the more used 

of all them, in special cyclic and linear potential programs [35, 36]. In a previous work, an 

electrode surface has been modified by the irreversible deposition of an artificial clay 

(Laponite®), while a redox probe Fe(CN)6
4- was responsible of the charge transference; this 

system was studied by experimental and computer simulated voltammograms [37].  

  The main aims of the present work are (i) to identify and characterize the effect of 

defects on the electrodeposition process in the neighborhood of the critical regime of the 

c(2x2) order structure; (ii) to draw general conclusions on the effect of the impurities on the 

linear sweep rate voltametric curves; and (iii) to provide the basis for the evaluation of 

experimental findings in modified electrodes. 

 The paper is organized as follows: In Section 2, the lattice-gas model and details of 

Monte Carlo simulations are presented. Results and discussion are presented in Section 3.  

Finally, the conclusions are drawn in Section 4. 
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2- Monte Carlo simulation and basic definitions 

 The electrosorption process can be modeled considering an electrode surface as a 

square lattice with M=L2 adsorption sites predefined, being L the lateral size. The charge 

transference mechanism is as follow: when an electroactive species, called A, is deposited at 

the surface, an electron is transferred from interphase to the electrode bulk. In reverse, when 

an electroactive particle is desorbed from the electrode an electron is expulsed. However, two 

electrons cannot be transferred in the same direction consecutively. This can be expressed by 

the next equation for a charged particle A-   

     * adsA A e         (1) 

where (*) denote an empty site, Aads  the A-species  adsorbed and e- is the elementary charge 

unit. 

 The electrode surface can be modified by the irreversible deposition of a non-

electroactive species in the range of the work potential, called B. The main role of this species 

is blocking the charge transfer sites. If NB sites are blocked in the substrate, then M - NB are 

the available sites for deposition of A-species. The surface density of blocked sites is 

monitored by /BN M  ,  if  0[1]   the substrate is empty[full].  

  Both species cannot interact with each other. Only interactions, w, between A particles 

are considered.  The Hamiltonian can be expressed by: 

 

 
,
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      (2) 

where ci is the occupation variable of the i-th site, which takes the value 1 if the site is 

occupied by A and 0 in any other case. Here μ is the chemical potential. The first and second 

sum runs over all nearest-neighbors (NNs) pairs and all available sites respectively. In this 
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work, repulsive interactions (w>0) are considered. This is essential to consider the formation 

of the order structure called c(2x2).  

The chemical potential associated to the deposition process can be connected to the 

electrochemical potential (E) with the dilute-solution approximation as [12]. 

 

0 lnB

o

C
k T e E

C
    
   

 
    (3) 

 

where 0 is a chemical reference potential, Bk T  is temperature expressed as relative units of 

the Boltzmann constant, Bk . C  and 0C are bulk ionic concentration and a reference 

concentration, respectively.   is the electrosorption valence [38, 39], e 
 is the charge 

transferred through the external circuit. This study assume that    is constant [40, 41]. 

 The current I in the voltammograms, can be obtained in the grand canonical assembly 

via the normalized mean square fluctuations  [42–44] of the adsorbed phase. Without loss of 

generality, the dimensionless current (i) can be expressed  [14, 37 , 45, 46]   as: 
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                    (4)

  

 here  , is the number of adsorption sites per unit surface area, v   is the sweep rate and < NA 

> , are average  of the particles deposited. Is important to observe that θ = < NA >/M  is the 

average coverage of the species A on surface.  In this work a linear sweep of potential is 

considered. 

 To monitor the low-temperature ordered phase c(2x2), is useful to define an order 

parameter as [47] , 
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where θ1 and θ2 are the average coverage of two sub-lattices, 1 and 2 respectively, trivially 

defined in the ordered structure, as is shown in figure 1. This definition considers the two 

possible configurations (or degenerations) of the structure. When Ψ = 1, the pure structure is 

formed, thus, complete order can be identified. But, when Ψ = 0, the particles are in a 

disordered configuration over the substrate. 

 Other magnitude, useful to describe the order, is the configurational entropy per site, 

defined by fluctuations theory as: 

    22
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    [6] 

where 22

d A A A Aq HN H N N N    is the differential heat associated to the 

deposition process [10].  From equation (6), the integral entropy can be obtained by: 
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
        [7] 

 The adsorption-desorption equilibrium process is simulated by Monte Carlo technique 

in the Grand Canonical Ensemble, using the Glauber algorithm[4, 48]. The Metropolis 

scheme [49] is used to satisfy the principle of detailed balance.  

    Initially, the empty lattice is filled randomly with a density  . The species A will 

adsorb or desorb. Thus, it is considered the modified surface in contact with a particle A 

reservoir, at a temperature T and potential E. A Monte Carlo step (MCS) is achieved when 

each of the M sites has been tested to transfer charge to or from the electrode. Typically, the 

equilibrium state can be well reproduced after discarding the first 5 × 106 MCSs. Then, the 

next 2 × 106 MCSs are used to compute averages. 500 different initially random 

configurations were used.  



8 

3. Results and discussions 

The electrode surface is represented as a square lattice of L=256, and there are no sizes 

effects observed. For simplicity, the chemical potential and the lateral energies are expressed 

in kBT units. Periodic boundary conditions are considered. The electrosorption valence is set 

to value,  1  . 

In first place, it is described the formation of the c(2x2) structure without species B (σ = 

0). Figure 2 show, in the same axis, the order parameter, adsorption isotherm, and current, 

versus E/kBT , for  w/kBT=4.0 as the energy value chosen to observe the ordered phase. The 

c(2x2) structure is fully formed at a half of the surface coverage, and it is seen as a broad 

plateau in the isotherm.  

The order parameter reaches the value 1.0 at the same potential range of the isotherms 

plateau. When the coverage is less or more than the half coverage, the structure is imperfect, 

then Ψ tend to zero.   

With respect to the voltammogram, the current shows two peaks before and after the 

formation of the c(2x2) structure. It is useful separate the analysis in three regions, delimited 

by dash line as is indicated in figure 2. Region I), at low potential values, before the first peak: 

The increase in fluctuations (current) is due to the availability of empty sites and the 

interaction energy between particles A. In the last case, the interactions cause the particles A 

to be deposited far from each other.  The fluctuation and i, increases until a maximum, first 

positive current peak ( 1pi  ), that occurs before the formation of the half coverage (θ = 0.5) in 

the isotherm. This peak corresponds to the inflexion point before the formation of the plateau. 

Region II), between peaks: When the c(2x2) structure is formed, the fluctuations are strongly 

reduced, in correspondence with the broad plateau in the isotherm.  As θ > 0.5, the fluctuation 

and current rise until the formation of a second peak,  2pi  , which correspond to the second 

inflexion point in the isotherm. Finally the region III): after the second peak, where the 



9 

reduction of i, is due to the decrease of the empty sites and, when the surface is complete 

filled, at θ s=1.0, the current drop to zero. 

Now, the formation of the c(2x2) structure in presence of species B is analyzed. The order 

parameter Ψ versus E/kBT for 0 ≤ σ ≤1, is shown in figure 3(a). As σ increase Ψ is 

considerable reduced. This means that the order is reduced by the presence of particles B on 

the electrode surface, even at low σ values.  To quantify this phenomenon it is possible to 

define a function as: 

        
( )

( )
( 0)

dE
T

dE









 




     (5) 

The parameter T(σ) is a quotient of areas between the clean surface, σ=0, and any other 

case. Their values are an indicator of the σ influence in the ordering of species A at the 

electrode. In figure 3(b) T(σ) versus σ is shown. It can be seen that the order decreases 

drastically from σ = 0.0 to σ = 0.1, then the decrease is slower until tend to zero. To 

understood how particles B affect the order, it is important to observe that even at low σ 

values the c(2x2) structure is destroyed Figure 4, shows a snapshot of the lattice status at 

σ=0.1. The blue dots are particles B, blacks are particles A and white are empty sites. The 

boundaries of regions with different degenerations, delimited by red lines in figure 4, can 

generally be identified by the following : Particles B which reduce the coordination of 

particles A adsorbed in their neighborhoods and nearest neighbors with the same occupation 

(indicated by rectangles in figure 4). Figure 5(a) show the adsorption isotherms (E/kBT versus 

θ) for different σ values. As σ increase the plateau begins to be less wide until, at σ>0.4, is 

difficult to distinguish and for σ>0.6, disappear completely. All isotherms saturate at the value 

θs=1-σ respectively, as is expected. This is in complete agreement with analyzes performed 

for the order parameter. 
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Figure 5(b) shows the simulated voltammograms (E/kBT versus i) at different σ values. 

Several observations can be made. For σ > 0.0, the first peak is more intense than the second, 

1 2p pi i   and ip-2 tend to disappear as σ grows up. This can be understood because the 

fluctuations (and hence the charge transfer) are more important in situations where there are 

more vacancy sites, specifically at low coverages. The analysis is separated in three region 

like has been done before. In region (I), as σ increases, the first peak decreases because the 

availability of empty sites is reduced, but the potential peak Ep-1 does not show substantial 

shifts. In region (II), between the peaks, depositions of particles B reduce the order of the 

c(2x2) structure. Particles B favor the deposition on the structure because the energy 

associated to the deposition, in average, is smaller than when the structure is perfectly formed 

(σ=0). This phenomenon causes that i increase. But this effect is reduced as σ>0.6, because 

the empty sites are reduced, and the c(2x2) is not observed in the substrate. Finally, in region 

(III), after ip-2, when the order is destroyed in all cases, the plateaus of the isotherms are less 

visible. The second inflexion point is displaced toward low potentials, as well as the position 

of the 2pi  . But, when σ>0.6, the second peak and the ordered phase disappears completely, as 

expected.  

If we compare Figures 5 (a) and (b) in a single view, and with the support of previous 

analyzes, it is easy to understand that voltammograms provide more detailed information than 

isotherms to describe physical processes occurring on the surface. Especially in cases like in 

the present work, where plateaus and inflection points undergo modifications as the electrode 

surface is altered. 

  Now, we are interested in analyze the effect of the interactions at σ constant. Figure 6 

(a-c) shows adsorption isotherms, order parameter and current, for σ=0.1, at w/kBT=0.0, 0.5, 

1.0, 2.0 and 4.0. At w/kBT=0.0, the isotherm have a sigmoidal shape and saturate at θs=0.9, as 

expected. The order parameter is less than 5%, this means there is no order on the lattice. The 
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current show only one peak, intense, at E/kBT=0.0; because, in the absence of interactions, the 

only limitation of charge transfer is the availability of empty sites. When w/kBT>0.0 the 

isotherms show a broad plateau and the order parameter is higher as the interactions becomes 

more intense. Moreover, the current peak decrease because, as the interaction is strongly, 

fluctuations decrease, but the potential peak it is not affected, and when w/kBT>1.0 the second 

peak begins to be observed. Then the separation of peaks increases as the interaction 

increases. 

The figure 7 shows the configurational entropy S, defined by equation (7), for the two 

cases previously analyzed. In the inset a), S versus θ for several σ values at w/kBT=4, is 

shown. At a clean surface (σ=0.0), three minimums are observed in correspondence with the 

three ordered states; empty surface (θ=0.0), c(2x2) structure (θ=0.5) and at full coverage 

(θs=1.0).  All the central minimums match with the coverage where the plateaus are formed 

and with θs, as expected. Between these minimums, two maximums are observed (θ=1/4, 3/4); 

these correspond to the disordered states. As σ increase both maximums decrease, and the 

minimum associated with c(2x2) structure increase, this is evidence that particles B weaken 

order. But, for σ≥0.4, the second maximum disappears like the plateaus in the isotherms.  

The inset b) shows the entropy for σ=0.1 and several values of w/kBT. For the case 

without interactions, Langmuir case w/kBT=0.0, the lobule is completely symmetric respect 

θ≈0.45. As w/kBT increase, the lobule decreases until a minim appears in correspondence with 

the formation of the order structure and the plateau in the isotherm. These minima are deeper 

around θ≈0.45 and are more asymmetric upon w/kBT increase. As the particles B affect more 

the order to high coverage, the second maximum is less intense that the first. The 

configurational entropy is in concordance with the isotherms analysis.  

 In other hand, it is possible to use the minimums of the configurational entropy to infer 

how σ affects the critical temperature TC(L), of the c(2x2) phase transition. The entropy versus 
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kBT at the constant σ, presents an inflection point at kBTC. This behavior is shown in Figure 8, 

for σ = 0.1. To obtain this value, is easy consider the maximum of the derivative of S respect 

to kBT, as shown in the inset (a) of Fig.8 . In inset (b) kBTC(L) (in units of, kBTC(L=256, σ=0) 

=2.24(2)) versus   σ is shown. By means of a linear fit, one gets kBTC (σ) = 0.99(2)-1.29(2)σ. 

As expected, TC decrease with increasing particles B amount. 

 Finally, it is analyzed the behavior of voltammograms at high values of w/kBT and 

several values of σ.  Figure 9(a) shows a voltammogram for w/kBT=6.0 and  σ=0.0, 0.1, 0.2, 

0.3 and 0.5.  

In this case, in addition to the “two peaks” analysis already described, two and three new 

small peaks are observed for σ> 0.0, those peaks are marked with a blue arrow. These peaks 

appear due to the strong repulsion between species A, and can be used to describe different 

sites environments, as E/kBT increase. In Figure 9(b), the peaks are labeled from (i) to (v) for 

w/kBT=6.0 and σ= 0.5.  Before the peak (i), the less energetic environment is surrounded by 

empty sites, particles B, or a combination of both. The filling of this environment, at low 

potentials, is the main responsible of the mayor peak. In the Figure 9 (b), the “snapshot” 

shows an example of this environment of empty sites (white dots): red dots are empty sites or 

particles B and blue dots are particles A. The blue arrows indicate that the central empty site 

will be occupied after the peak. Then, at the peak (ii), the less energetic environment is those 

with just one particle A. The other peaks (iii-v) can be understood in the same way, where the 

environments that need more energy to occupy the central site, are those surrounded by a 

greater number of particles A. Hence, in this situation, particles B, favor the transient states. 

4. Conclusions 

 In this work, standard Monte Carlo simulation in the Gran Canonical Ensemble was 

used in order to study the electrosorption on a modified electrode surface. The main objective 



13 

was to analyze how the depositions of non-electroactive particles on the electrode surface, 

affect the criticality of phase c (2x2).   

 A square lattice-gas model was used to define the electrode surface. Two species were 

adsorbed: specie A, electroactive, and B, non-electroactive. The density of each one was 

called θ and σ, respectively. Only repulsive interactions, in kBT units (w/kBT), between 

particles A were considered.  

Several conclusions can be drawn: 

1. At low density of σ, the c(2x2) structure is destroyed, because the species B delimit 

regions, like domain boundaries. These limits prevent the order of the structure c (2x2) 

from reaching the entire system. 

2. As σ increase, the plateau in the isotherms begins to be less wide, until at σ>0.6, 

disappears completely. The particles B weaken the c(2x2) structure, the plateaus 

increases in its slope.   

3. The voltammograms shows two peaks for different σ values: The first peak is more 

intense than the second because the fluctuations are more important at low coverages. 

As σ increases, the first peak decreases because empty sites decrease. Particles B favor 

the deposition of particles A on the c(2x2) structure, this causes the current increase, at 

the cost of destroying the phase order. At σ>0.6, the second peak disappears. 

4. The configurational entropy per site, shows two lobules, separate by three minimums 

in correspondence with empty lattice, c(2x2) structure (θ=0.5) and full occupied lattice 

(θ=1.0).  As σ increase the lobules and the minimum associated to c(2x2) structure 

decreases. This in complete agreement with the previous analysis realized to isotherms 

and voltammograms.  

5. With the configurational entropy, it was possible to obtain a decreasing linear 

relationship between TC and σ.  
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6. At high interaction energy, several contributions of transient estates were manifested 

as current peaks in the voltammograms, each peak correspond to the filling of 

different environments, around an empty central site. 
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Figure captions  

Figure 1 : Scheme of the lattice in which two sub-lattices, 1 and 2, are identified.  

Figure 2:  The surface coverage, order parameter  and current, versus E/kBT , for  w/kBT=4.0. 

Dash line separate regions I, II and III. 

Figure 3: a) The order parameter Ψ versus E/kBT for  0 ≤ σ ≤1 b) T(σ) versus σ 

Figure 4: Snapshot of the lattice status at σ=0.1. The blue dots are particles B, blacks are 

particles A and white are empty sites. Blue ellipses were included for the identification of at 

the boundaries of regions with different degenerations. Red lines delimit regions with 

different degenerations 

 

Figure 5: Fort different σ values: a) Adsorption isotherms, E/kBT versus θ, b) Simulated 

voltammograms,  E/kBT versus i . 

Figure 6 : For σ=0.1, and several values of  w/kBT. a) adsorption isotherms, b)order parameter 

and c) current. 

Figure 7: a) Configurational entropy S, versus θ. for several σ values.   b) Configurational 

entropy for σ=0.1 and several values of w/kBT. 

Figure 8:  S versus kBT, at σ=0.1. a) Derivative of  S respect to kBT. b)  kBTC(L) / kBTC(L=256, 

σ=0)  versus  σ. 

Figure 9: a) Voltammograms for w/kBT=6.0 and  several  σ values. b) Voltammogram for  

w/kBT=6.0 and σ=0.5. Peaks are labeled from (i) to (v).  Snapshots:  environment of an empty 

site, red dot are empty sites or particles B and blue dots are particles A. 
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