58 research outputs found

    Small-scale testing of ceramic matrix composites

    Get PDF
    Please click Additional Files below to see the full abstrac

    Shear and delamination behaviour of basal planes in Zr3AlC2 MAX phase studied by micromechanical testing

    Full text link
    The mechanical properties of layered, hexagonal-structured MAX phases often show the combined merits of metals and ceramics, making them promising material candidates for safety critical applications. While their unique mechanical performance largely arises from the crystal structure, the effect of chemistry on the properties of these materials remains unclear. To study this, here we employed two in situ electron microscope small scale testing approaches to examine the micromechanical properties of Zr3AlC2, and compared the results with the properties of Ti3SiC2: we used micropillar compression tests to measure basal slip strength, and double cantilever beam splitting tests to evaluate fracture energy for basal plane delamination. We observed distinct and systematic differences in these measured properties between Zr3AlC2 and Ti3SiC2, where Zr3AlC2 appeared to be stronger but more brittle at the microscale, and discussed the implications of the results in the selection, design, and engineering of MAX phases for targeted engineering applications

    The new challenges of machining Ceramic Matrix Composites (CMCs): review of surface integrity

    Get PDF
    Ceramic Matrix Composites (CMCs) are currently an increasing material choice for several high value and safety-critical components, fact that has recently originated the need of understanding the effect of several machining processes. Due to the complex nature of CMCs - i.e. heterogeneous structure, anisotropic thermal and mechanical behaviour and generally the hard nature of at least one of the constituents (e.g. fibre or matrix) - machining become extremely challenging as the process can yield high mechanical and thermal loads. Furthermore, the orthotropic, brittle and heterogeneous nature of CMCs result in different material removal mechanisms which lead to unique surface defects. Hence, this review paper attempts to provide an informative literature survey of the research done in the field of conventional and non-conventional machining of CMCs with a main focus on critically evaluate how different machining techniques affect the machined surfaces. This is achieved by exploring and recollecting the different material characterisation techniques currently used to observe and quantify the mechanical and thermal surface and subsurface damages and highlight their governing removal mechanisms

    On understanding the microstructure of SiC/SiC Ceramic Matrix Composites (CMCs) after a material removal process

    Get PDF
    The unique material nature (e.g. hard, brittle, heterogeneous and orthotropic) of SiC-based Ceramic Matrix Composites (CMCs) highly affects the outcomes of machining process by inducing high thermo-mechanical loads during material removal. This can result in severe material damage which in turn causes a reduction of the in-service life of critical structural ceramic components (such as in aero-engines or nuclear reactors). In this study, the phenomenon by which the material removal mechanism during drilling influences the CMC surface integrity are discussed by characterising the fracture and deformation phenomena on the CMC's constituents - i.e. SiC and Si materials. Moreover, the strain induced to the surface, together with the changes in chemical composition are characterised via micro Raman spectroscopy and related to the principles of residual stresses upon cutting. This results in a novel understanding of the material removal process that governs cutting of SiC-based CMCs while emphasising how the different microstructure, morphology and nature of ceramics behave under the same cutting conditions. This study has therefore led to a comprehension of how the microstructure of complex hierarchical ceramic materials such as SiC/SiC CMCs is affected by a mechanical cutting process and opens avenues to understand the structure damage under other machining operations (e.g. milling, grinding)

    Determining the Fundamental Failure Modes in Ni-rich Lithium Ion Battery Cathodes

    Full text link
    Challenges associated with in-service mechanical degradation of Li-ion battery cathodes has prompted a transition from polycrystalline to single crystal cathode materials. Whilst for single crystal materials, dislocation-assisted crack formation is assumed to be the dominating failure mechanism throughout battery life, there is little direct information about their mechanical behaviour, and mechanistic understanding remains elusive. Here, we demonstrated, using in situ micromechanical testing, direct measurement of local mechanical properties within LiNi0.8Mn0.1Co0.1O2 single crystalline domains. We elucidated the dislocation slip systems, their critical stresses, and how slip facilitate cracking. We then compared single crystal and polycrystal deformation behaviour. Our findings answer two fundamental questions critical to understanding cathode degradation: What dislocation slip systems operate in Ni-rich cathode materials? And how does slip cause fracture? This knowledge unlocks our ability to develop tools for lifetime prediction and failure risk assessment, as well as in designing novel cathode materials with increased toughness in-service

    Probabilistic modelling of tool unbalance during cutting of hard-heterogeneous materials: a case study in Ceramic Matrix Composites (CMCs)

    Get PDF
    Compared to other materials, CMCs display a unique high hardness and heterogeneous nature which are critically reflected during the drilling process where asymmetrical high forces are suffered by the tool, resulting in an unbalance of the drill bit. Hence, this study proposes a mechanistic approach where the hard nature resulting in high radial forces is analytically studied and coupled with a probabilistic model where the heterogeneous nature of CMCs is taken into consideration. This theoretical study results in an in-depth understanding of the loading unbalance occurring on different tool sizes during drilling of CMCs which can lead to a premature tool breakage. The nature of this unique force that is assumed in the theoretical approach to influence the cutting of hard-heterogeneous materials is experimentally validated by drilling a homogeneous and a heterogeneous hard ceramics, i.e. a monolithic SiC and a SiC/SiC CMC. Moreover, the model developed together the with drilling experiments with different tool diameters result in an understanding of why small tool diameters suffer a premature tool breakage when drilling difficult-to-machine CMCs

    Shear and delamination behaviour of basal planes in Zr3AlC2 MAX phase studied by micromechanical testing

    Get PDF
    The mechanical properties of layered, hexagonal-structured MAX phases often show the combined merits of metals and ceramics, making them promising material candidates for safety critical applications. While their unique mechanical performance largely arises from the crystal structure, the effect of chemistry on the properties of these materials remains unclear. To study this, here we employed two in situ electron microscope small-scale testing approaches to examine the micromechanical properties of Zr3AlC2, and compared the results with the properties of Ti3SiC2: we used micropillar compression tests to measure basal slip strength, and double cantilever beam splitting tests to evaluate fracture energy for basal plane delamination. We observed distinct and systematic differences in these measured properties between Zr3AlC2 and Ti3SiC2, where Zr3AlC2 appeared to be stronger but more brittle at the microscale, and discussed the implications of the results in the selection, design, and engineering of MAX phases for targeted engineering applications

    Evaluation of the environmental degradation of interphases in Ceramic Matrix Composites (CMCs) via in-situ SEM micromechanical testing

    Get PDF
    The need to increase the cycle efficiency and reduce NOx emissions from aero-engines has promoted the development of Silicon Carbide (SiC) based Ceramic Matrix Composites (CMCs) which have entered in service in aircraft turbine engines as replacements for some Ni-based superalloys. The main tendency of material choice is converging to CMCs constituted by SiC fibres coated with a thin (0.1-1 µm) BN interphase within a SiC matrix (SiC/BN/SiC), resulting in an optimised tough ceramic composite. However, unlike the generic tendencies found for metallic materials, environmental effects seem to not follow a clear tendency as hottest temperatures do not necessarily result in more severe degradation. This is due to the complex degradation thermodynamics occurring at the interface of the SiC-BN system such as volatilisation of B species, borosilicate glass formation or formation of self-healing oxide products. Please click Additional Files below to see the full abstract

    Grain refinement mechanism of nickel-based superalloy by severe plastic deformation - Mechanical machining case

    Get PDF
    © 2019 Acta Materialia Inc. This paper studied the formation mechanism of white layer of a next generation nickel-based superalloy formed under severe plastic deformation induced by a mechanical material removal process. A graded microstructure of the white layer in the nickel-based superalloy has been revealed for the first time, which is composed of (i) a “dynamic recrystallisation” layer formed by nanocrystalline (∼200 nm) grains at the vicinity of the surface and (ii) a “dynamic recovery” layer with subgrain microstructures extending further into the subsurface. The mechanism of surface grain refinement was identified based on the results obtained via crystallographic and chemical analysis, as well as in-situ micro-mechanics experiments in the scanning electron microscope. It is found that in the top surface layer not only grain refinement but also the γ′ phase dissolution occurs, changing drastically from the bulk material. Furthermore, it is shown how the high plastic strain and cutting temperature along the subsurface causes grain refinement in the white layer and grain elongation in the subsurface. The γ′ precipitates in the recrystallisation layer are dissolved during the machining process, while the ultra-high cooling rate suppresses the further precipitation of this phase, resulting in the supersaturation of γ grains or minimized γ′ precipitates in the top surface layer. Hence, the grain refinement does not result in an increase of mechanical stiffness but a deterioration of mechanical properties due to the dissolution of the strengthening phase γ’, which leads to a lower strength and increased ductility. Machining is generally treated as a cold-working process. However, according to our findings hot-working with dynamic recrystallisation and recovery, as well as phase evolution, occurs in the white layer of nickel-based superalloys

    Determining the fundamental failure modes in Ni-rich lithium ion battery cathodes

    Get PDF
    Challenges associated with in-service mechanical degradation of Li-ion battery cathodes has prompted a transition from polycrystalline to single crystal cathode materials. Whilst for single crystal materials, dislocation-assisted crack formation is assumed to be the dominating failure mechanism throughout battery life, there is little direct information about their mechanical behaviour, and mechanistic understanding remains elusive. Here, we demonstrated, using in situ micromechanical testing, direct measurement of local mechanical properties within LiNi0.8Mn0.1Co0.1O2 single crystalline domains. We elucidated the dislocation slip systems, their critical stresses, and how slip facilitate cracking. We then compared single crystal and polycrystal deformation behaviour. Our findings answer two fundamental questions critical to understanding cathode degradation: What dislocation slip systems operate in Ni-rich cathode materials? And how does slip cause fracture? This knowledge unlocks our ability to develop tools for lifetime prediction and failure risk assessment, as well as in designing novel cathode materials with increased toughness in-service
    corecore