301 research outputs found

    Comparing the effects of two inhaled glucocorticoids on allergen-induced bronchoconstriction and markers of systemic effects, a randomised cross-over double-blind study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inhaled glucocorticoids are efficient in protecting against asthma exacerbations, but methods to compare their efficacy vs systemic effects have only been attempted in larger multi-centre studies. The aim of the current study was therefore to directly compare the effects of two separate inhaled glucocorticoids, mometasone and budesonide, to compare the effects on the early and late asthmatic responses to inhaled allergen in patients with mild allergic asthma, and sputum eosinophils, and to relate the clinical positive effects to any systemic effects observed.</p> <p>Methods</p> <p>Twelve patients with documented early and late asthmatic responses (EAR and LAR) to inhaled allergen at a screening visit were randomized in a double-blind fashion to treatment with mometasone (200 μg × 2 or 400 μg × 2), budesonide (400 μg × 2) or placebo in a double-blind crossover fashion for a period of seven days. Challenge with the total allergen dose causing both an EAR and LAR was given on the last day of treatment taken in the morning. Lung function was assessed using FEV1, and systemic glucocorticoid activity was quantified using 24 h urinary cortisol.</p> <p>Results</p> <p>Mometasone and budesonide attenuate both EAR and LAR to allergen to a similar degree. No significant dose-related effects on the lung function parameters were observed. Both treatments reduced the relative amount of sputum eosinophils (%) after allergen. At the dose of 800 μg daily, mometasone reduced 24 h urinary cortisol by approximately 35%. Both drugs were well tolerated.</p> <p>Conclusions</p> <p>Mometasone and budesonide are equieffective in reducing early and late asthmatic responses induced by inhaled allergen challenge. Mometasone 800 μg given for seven days partially affects the HPA axis.</p

    The DRIFT Dark Matter Experiments

    Full text link
    The current status of the DRIFT (Directional Recoil Identification From Tracks) experiment at Boulby Mine is presented, including the latest limits on the WIMP spin-dependent cross-section from 1.5 kg days of running with a mixture of CS2 and CF4. Planned upgrades to DRIFT IId are detailed, along with ongoing work towards DRIFT III, which aims to be the world's first 10 m3-scale directional Dark Matter detector.Comment: Proceedings of the 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 201

    Long-term study of backgrounds in the DRIFT-II directional dark matter experiment

    Get PDF
    Low-pressure gas Time Projection Chambers being developed for directional dark matter searches offer a technology with strong particle identification capability combined with the potential to produce a definitive detection of Galactic Weakly Interacting Massive Particle (WIMP) dark matter. A source of events able to mimic genuine WIMP-induced nuclear recoil tracks arises in such experiments from the decay of radon gas inside the vacuum vessel. The recoils that result from associated daughter nuclei are termed Radon Progeny Recoils (RPRs). We present here experimental data from a long-term study using the DRIFT-II directional dark matter experiment at the Boulby Underground Laboratory of the RPRs, and other backgrounds that are revealed by relaxing the normal cuts that are applied to WIMP search data. By detailed examination of event classes in both spatial and time coordinates using 3.5 years of data, we demonstrate the ability to determine the origin of 4 specific background populations and describe development of new technology and mitigation strategies to suppress them

    Background Assay and Rejection in DRIFT

    Get PDF
    The DRIFT-IId dark matter detector is a m3-scale low-pressure TPC with directional sensitivity to WIMP-induced nuclear recoils. Its primary backgrounds were due to alpha decays from contamination on the central cathode. Efforts to reduce these backgrounds led to replacing the 20 μm wire central cathode with one constructed from 0.9 μm aluminized mylar, which is almost totally transparent to alpha particles. Detailed modeling of the nature and origin of the remaining backgrounds led to an in-situ, ppt-sensitive assay of alpha decay backgrounds from the central cathode. This led to further improvements in the thin-film cathode resulting in over 2 orders of magnitude reduction in backgrounds compared to the wire cathode. Finally, the addition of O2 to CS2 gas was found to produce multiple species of electronegative charge carriers, providing a method to determine the absolute position of nuclear recoils and reject all known remaining backgrounds while retaining a high efficiency for nuclear recoil detection

    The Drift Directional Dark Matter Experiments

    Get PDF
    The current status of the DRIFT (Directional Recoil Identification From Tracks) experiment at Boulby Mine is presented, including the latest limits on the WIMP spin-dependent cross-section from 1.5 kg days of running with a mixture of CS2 and CF4. Planned upgrades to DRIFT IId are detailed, along with ongoing work towards DRIFT III, which aims to be the world's first 10 m3-scale directional Dark Matter detector

    Low Threshold Results and Limits from the DRIFT Directional Dark Matter Detector

    Get PDF
    We present results from a 54.7 live-day shielded run of the DRIFT-IId detector, the world\u27s most sensitive, directional, dark matter detector. Several improvements were made relative to our previous work including a lower threshold for detection, a more robust analysis and a tenfold improvement in our gamma rejection factor. After analysis, no events remain in our fiducial region leading to an exclusion curve for spin-dependent WIMP-proton interactions which reaches 0.28 pb at 100 GeV/c^2 a fourfold improvement on our previous work. We also present results from a 45.4 live-day unshielded run of the DRIFT-IId detector during which 14 nuclear recoil-like events were observed. We demonstrate that the observed nuclear recoil rate of 0.31+/-0.08 events per day is consistent with detection of ambient, fast neutrons emanating from the walls of the Boulby Underground Science Facility

    Spin-dependent limits from the DRIFT-IId directional dark matter detector

    Get PDF
    Data are presented from the DRIFT-IId detector operated in the Boulby Underground Science Facility in England. A 0.8 m 3 fiducial volume, containing partial pressures of 30 Torr CS 2 and 10 Torr CF 4, was exposed for a duration of 47.4 live-time days with sufficient passive shielding to provide a neutron free environment within the detector. The nuclear recoil events seen are consistent with a remaining low-level background from the decay of radon daughters attached to the central cathode of the detector. However, charge from such events must drift across the entire width of the detector, and thus display large diffusion upon reaching the readout planes of the device. Exploiting this feature, it is shown to be possible to reject energy depositions from these Radon Progeny Recoil events while still retaining sensitivity to fiducial-volume nuclear recoil events. The response of the detector is then interpreted, using the F nuclei content of the gas, in terms of sensitivity to proton spin-dependent WIMP-nucleon interactions, displaying a minimum in sensitivity cross section at 1.8 pb for a WIMP mass of 100 GeV/c 2. This sensitivity was achieved without compromising the direction sensitivity of DRIFT. © 2011 Elsevier B.V. All rights reserved

    First measurement of nuclear recoil head-tail sense in a fiducialised WIMP dark matter detector

    Get PDF
    Recent computational results suggest that directional dark matter detectors have potential to probe for WIMP dark matter particles below the neutrino floor. The DRIFT-IId detector used in this work is a leading directional WIMP search time projection chamber detector. We report the first measurements of the detection of the directional nuclear recoils in a fully fiducialised low-pressure time projection chamber. In this new operational mode, the distance between each event vertex and the readout plane is determined by the measurement of minority carriers produced by adding a small amount of oxygen to the nominal CS2_{2} + CF4_{4} target gas mixture. The CS2_2 + CF4_4 + O2_2 mixture has been shown to enable background-free operation at current sensitivities. Sulfur, fluorine, and carbon recoils were generated using neutrons emitted from a 252^{252}Cf source positioned at different locations around the detector. Measurement of the relative energy loss along the recoil tracks allowed the track vector sense, or the so-called head-tail asymmetry parameter, to be deduced. Results show that the previously reported observation of head-tail sensitivity in pure CS2_{2} is well retained after the addition of oxygen to the gas mixture
    corecore