18 research outputs found

    The Immunogenicity of the Tumor-Associated Antigen α-Fetoprotein Is Enhanced by a Fusion with a Transmembrane Domain

    Get PDF
    Aim. To investigate the ability of recombinant modified vaccinia virus Ankara (rMVA) vector to induce an immune response against a well-tolerated self-antigen. Methods. rMVA vectors expressing different form of α-fetoprotein (AFP) were produced and characterized. NaĂŻve mice were vaccinated with MVA vectors expressing the AFP antigen in either a secreted, or a membrane-bound, or an intracellular form. The immune response was monitored by an IFNΓ ELISpot assay and antibody detection. Results. Vaccination with the membrane-associated form of AFP induced a stronger CD8+ T-cell response compared to the ones obtained with the MVA encoding the secreted or the intracellular forms of AFP. Moreover, the vaccination with the membrane-bound AFP elicited the production of AFP-specific antibodies. Conclusions. The AFP transmembrane form is more immunogenic. Expressing a membrane-bound form in the context of an MVA vaccination could enhance the immunogenicity of a self-antigen

    Specialized Pro-Resolving Mediators Mitigate Cancer-Related Inflammation: Role of Tumor-Associated Macrophages and Therapeutic Opportunities

    Get PDF
    International audienceInflammation is a fundamental physiological response orchestrated by innate immune cells to restore tissue homeostasis. Specialized pro-resolving mediators (SPMs) are involved in active resolution of inflammation but when inflammation is incomplete, chronic inflammation creates a favorable environment that fuels carcinogenesis and cancer progression. Conventional cancer therapy also strengthens cancer-related inflammation by inducing massive tumor cell death that activate surrounding immune-infiltrating cells such as tumor-associated macrophages (TAMs). Macrophages are key actors of both inflammation and its active resolution due to their plastic phenotype. In line with this high plasticity, macrophages can be hijacked by cancer cells to support tumor progression and immune escape, or therapy resistance. Impaired resolution of cancer-associated inflammation supported by TAMs may thus reinforces tumor progression. From this perspective, recent evidence suggests that stimulating macrophage's pro-resolving functions using SPMs can promote inflammation resolution in cancer and improve anticancer treatments. Thus, TAMs' re-education toward an antitumor phenotype by using SPMs opens a new line of attack in cancer treatment. Here, we review SPMs' anticancer capacities with special attention regarding their effects on TAMs. We further discuss how this new therapeutic approach could be envisioned in cancer therapy

    Immunotherapy of hepatocellular carcinoma: is there a place for regulatory T-lymphocyte depletion?

    No full text
    Item does not contain fulltextImmunotherapy represents a potential therapeutic option for patients with hepatocellular carcinoma (HCC), especially as secondary treatment to prevent recurrence. It has been shown that a patient's survival is directly correlated to the type and number of tumor-infiltrating immune cells, indicating that immune responses have a direct effect on the clinical course of the disease. We have assessed the potential of immunotherapy against HCC in preclinical models of low tumor burden. An antigen-specific strategy targeting alpha-fetoprotein, and consisting of immunization with a DNA-based synthetic vector (DNAmAFP/704), was tested on an autochthonous model of chemical hepatocarcinogenesis and led to an important (65%) reduction of the tumor burden. A nonspecific approach of CD25(+) T-cell depletion by injection of PC61 antibody was also tested on an orthotopic HCC model and led to a significant protection against tumor development. Antigen-specific immunotherapy and Treg depletion are promising strategies in physiologically relevant HCC preclinical models. Future clinical trials will demonstrate if a combination of Treg depletion with an antigen-specific immunotherapy will also translate into clinical responses in HCC patients.1 april 201

    Alloantigen gene transfer to hepatocytes promotes tolerance to pancreatic islet graft by inducing CD8 + regulatory T cells

    No full text
    International audienceBACKGROUND & AIMS: Induction of donor-specific immune tolerance is a good alternative to chronic life-long immunosuppression for transplant patients. Donor major histocompatibility complex (MHC) molecules represent the main targets of the allogeneic immune response of transplant recipients. Liver targeted gene transfer with viral vectors induces tolerance toward the encoded antigen. The aim of this work was to determine whether alloantigen gene transfer to hepatocytes induces tolerance and promotes graft acceptance.METHODS: C57BL/6 (H-2b) mice were treated with adeno-associated viral (AAV) vector targeting the expression of the MHC class I molecule H-2Kd to hepatocytes, before transplantation with fully allogeneic pancreatic islet from BALB/c mice (H-2d).RESULTS: AAV H-2Kd treated mice were tolerant to the alloantigen, as demonstrated by its long-term expression by the hepatocytes, even after a highly immunogenic challenge with an adenoviral vector. After chemical induction of diabetes, the AAV treated mice had significantly delayed rejection of fully allogeneic pancreatic islet grafts, with more than 40% of recipients tolerant (>100days). AAV-mediated expression of H-2Kd in the liver induced the local expansion of CD8+ T lymphocytes with allo-specific suppressive properties. The adoptive transfer of these liver-generated CD8+ Tregs into naive diabetic mice promoted the long-term survival of allogeneic pancreatic islet grafts.CONCLUSION: AAV-mediated long-term expression of a single MHC class I molecule in the liver induces the generation of a subset of allo-specific CD8+ Treg cells, which promote tolerance toward fully allogeneic graft. Liver gene transfer represents a promising strategy for in vivo induction of donor-specific tolerance.LAY SUMMARY: The liver has a special immune system, biased toward tolerance. In this study, we investigated the possibility of harnessing this property of the liver to induce tolerance to an allogeneic transplantation. We demonstrate for the first time that the in vivo gene transfer of an allogeneic antigen with an adeno-associated viral vector to mouse hepatocytes induces the expansion of a population of CD8+ regulatory T lymphocytes. These Tregs are then instrumental in preventing the rejection of allogeneic pancreatic islets transplanted in these animals. Allogeneic transplantation is the main treatment for the end-stage diseases of a number of organs. Life-long immunosuppressive treatments are still required to limit graft rejection, and these treatments exhibit serious side effects. Our present findings open a new avenue for promoting allo-specific tolerance via in vivo induction of CD8+ Treg expansion

    CLEC-1 Restrains Acute Inflammatory Response and Recruitment of Neutrophils following Tissue Injury

    No full text
    International audienceThe inflammatory response is a key mechanism for the elimination of injurious agents but must be tightly controlled to prevent additional tissue damage and progression to persistent inflammation. C-type lectin receptors expressed mostly by myeloid cells play a crucial role in the regulation of inflammation by recognizing molecular patterns released by injured tissues. We recently showed that the C-type lectin receptor CLEC-1 is able to recognize necrotic cells. However, its role in the acute inflammatory response following tissue damage had not yet been investigated. We show in this study, in a mouse model of liver injury induced by acetaminophen intoxication, that Clec1a deficiency enhances the acute immune response with increased expression of Il1b, Tnfa, and Cxcl2 and higher infiltration of activated neutrophils into the injured organ. Furthermore, we demonstrate that Clec1a deficiency exacerbates tissue damage via CXCL2-dependent neutrophil infiltration. In contrast, we observed that the lack of CLEC-1 limits CCL2 expression and the accumulation, beyond the peak of injury, of monocyte-derived macrophages. Mechanistically, we found that Clec1a-deficient dendritic cells increase the expression of Il1b, Tnfa, and Cxcl2 in response to necrotic cells, but decrease the expression of Ccl2. Interestingly, treatment with an anti-human CLEC-1 antagonist mAb recapitulates the exacerbation of acute immunopathology observed by genetic loss of Clec1a in a preclinical humanized mouse model. To conclude, our results demonstrate that CLEC-1 is a death receptor limiting the acute inflammatory response following injury and represents a therapeutic target to modulate immunity

    Triggering the resolution of inflammation with agonistic anti-ChemR23 antibody dampens inflammation-driven carcinogenesis and metastasis

    No full text
    International audienceTriggering the resolution of inflammation with agonistic anti-ChemR23 antibody dampens inflammation-driven carcinogenesis and metastasis Chronic inflammation is associated with abnormal non-phlogistic clearance (efferocytosis) of apoptotic cells by macrophages and a defect of the resolution of inflammation pathways. The resolution of inflammation is an active immunological process mediated by specialized pro-resolving mediator (SPM) which target specific resolutive G-protein coupled receptors expressed by different immune cells and participate at the return to tissue homeostasis after an injury. Defects in the clearance of (chemotherapy-induced) apoptotic tumor cell debris strengthens inflammation and has been associated with exacerbated tumor growth in several preclinical models. Proresolutive therapeutic approaches, such as using exogenous resolvin E1 (RvE1), the natural lipidic proresolutive ligand of GPCR ChemR23, have been shown to dampen tumor-associated inflammation and to reduce tumor growth. We found that ChemR23 is inducible on myeloid cells by inflammatory stimuli and mainly expressed by tumor associated macrophages in melanoma and lung cancers. We identified an agonist anti-ChemR23 mAb that accelerates the resolution of inflammation in acute inflammatory model in mice. Finally, we report that agonist anti-ChemR23 mAb limits chronic inflammation in the tumor microenvironment and inhibits metastasis development

    Total Pancreatectomy and Pancreatic Allotransplant in a Porcine Experimental Model

    No full text
    International audienceObjectives: The main objective of this experimental study was to evaluate the feasibility of diabetes induction by total pancreatectomy and pancreatic allotransplant after diabetes induction by total pancreatectomy. The secondary objective was to evaluate metabolic (C-peptide, glycemia) and inflammatory (lactate and platelet levels) parameters after diabetes induction by total pancreatectomy and pancreatic allotransplant after total pancreatectomy. Materials and Methods: The study protocol wasapproved by the French Minister of Research (APAFiS no.18169). Insulin-dependent diabetes was induced bytotal pancreatectomy in one male Susscrofa pig, and pancreatic allotransplant was performed, after total pancreatectomy, in 3 male Susscrofa pigs. Total pancreatectomy was performed under general anesthesia, with meticulous dissection of the portal veinand the splenic vein to preserve the spleen. Concerning pancreas procurement, extensive pancreas preparation occurred during the warm phase, before cold perfusion. Pancreatic allotransplant was performed using donor aorta (with superior mesenteric artery and celiactrunk).Results: Diabetes induction was successful, with negative C-peptide values at 3 hours after total pancreatectomy. Glycemic control without hypoglycemic events was obtained with the use of long-acting insulin administered once per day. No rapid-acting insulin was used. In animals that received pancreatic allotransplant, after enteral feeding was started, glycemic control without hypoglycemic events and without insulin was obtained in 2 animals.Conclusions: In an experimental porcine model, diabetes induction by total pancreatectomy and pancreatic allotransplant after total pancreatectomy are feasible and effective. The development of these models offers the potential for new investigations into ischemia-reperfusion injuries, improvement of pancreas procurement methods, and preservation techniques

    SIRP α/CD 47 axis controls the maintenance of transplant tolerance sustained by myeloid‐derived suppressor cells

    No full text
    International audienceMyeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature hematopoietic precursors known to suppress immune responses. Interaction of SIRP alpha (SIRPα), expressed by myeloid cells, with the ubiquitous receptor CD47 is an important immune checkpoint of the innate response regulating macrophages and dendritic cells functions. We previously described that MDSC expressing SIRPα accumulated after transplantation and maintained kidney allograft tolerance. However, the role of the SIRPα/CD47 axis on MDSC function remained unknown. Here, we found that blocking SIRPα or CD47 with monoclonal antibodies (mAbs) induced differentiation of MDSC into myeloid cells overexpressing MHC class II, CD86 costimulatory molecule and increased secretion of macrophage-recruiting chemokines (eg, MCP-1). Using a model of long-term kidney allograft tolerance sustained by MDSC, we observed that administration of blocking anti-SIRPα or CD47 mAbs induced graft dysfunction and rejection. Loss of tolerance came along with significant decrease of MDSC and increase in MCP-1 concentration in the periphery. Graft histological and transcriptomic analyses revealed an inflammatory (M1) macrophagic signature at rejection associated with overexpression of MCP-1 mRNA and protein in the graft. These findings indicate that the SIRPα-CD47 axis regulates the immature phenotype and chemokine secretion of MDSC and contributes to the induction and the active maintenance of peripheral acquired immune tolerance
    corecore