128 research outputs found

    SMYD1, the myogenic activator, is a direct target of serum response factor and myogenin

    Get PDF
    SMYD1 is a heart and muscle specific SET-MYND domain containing protein, which functions as a histone methyltransferase and regulates downstream gene transcription. We demonstrated that the expression of SMYD1 is restricted in the heart and skeletal muscle tissues in human. To reveal the regulatory mechanisms of SMYD1 expression during myogenesis and cardiogenesis, we cloned and characterized the human SMYD1 promoter, which contains highly conserved serum response factor (SRF) and myogenin binding sites. Overexpression of SRF and myogenin significantly increased the endogenous expression level of Smyd1 in C2C12 cells, respectively. Deletion of Srf in the heart of mouse embryos dramatically decreased the expression level of Smyd1 mRNA and the expression of Smyd1 can be rescued by exogenous SRF introduction in SRF null ES cells during differentiation. Furthermore, we demonstrated that SRF binds to the CArG site and myogenin binds to the E-box element on Smyd1 promoter region using EMSA and ChIP assays. Moreover, forced expression of SMYD1 accelerates myoblast differentiation and myotube formation in C2C12 cells. Taken together, these studies demonstrated that SMYD1 is a key regulator of myogenic differentiation and acts as a downstream target of muscle regulatory factors, SRF and myogenin

    Revisited and Revised: Is RhoA Always a Villain in Cardiac Pathophysiology?

    Full text link

    Etude du rôle de nouveaux partenaires des cadhérines, les flotillines, dans la formation des jonctions adhérentes

    No full text
    Les jonctions adhérentes sont des jonctions intercellulaires essentielles à la morphogenèse et à la maintenance des tissus. Elles reposent sur l'assemblage de grands complexes multiprotéiques aux contacts intercellulaires, centrés sur des protéines transmembranaires appelées cadhérines. Nous avons découvert deux nouveaux partenaires des cadhérines N, E, M, P, R et 11, les flotillines. Nous avons caractérisé leur interaction avec la N-cadhérine et de couvert qu'elle était constitutive à la membrane plasmique et vraisemblablement indirecte. Nous avons démontré que les flotillines sont essentielles à la stabilisation des jonctions adhérentes dans des cellules musculaires et épithéliales, ainsi qu'à des processus cellulaires dépendants des jonctions. Nous montrons qu'en effet, les flotillines sont nécessaires à l'interaction des cadhérines avec la p120-caténine, qui inhibe leur internalisation et leur dégradation. Nos expériences suggèrent que les flotillines seraient impliquées dans la formation d'un microdomaine membranaire particulier au niveau de la jonction en cours de maturation, permettant le recrutement de la p120-caténine.Cadherins are essential in many fundamental processes such as tissue patterning during development and in the maintenance of adult tissue architecture. At regions of cell-cell contact, cadherins assemble into large macromolecular complexes named adherens junctions. Here we identify flotillin 1 and 2 as new partners of several classical cadherins. The interaction between flotillines and N-cadherin is constitutive at the plasma membrane and seems to require an intermediate partner. Knockdown of flotillins had a dramatic effect on N- and E-cadherin recruitment at the adherens junctions in both mesenchymal and epithelial cell types. At the molecular level, we show that flotillins stabilize cadherins at the PM hence allowing the coupling of 120 catenin, one of their main stabilizing partners. Our results suggest that flotillins might scaffold a membrane microdomaine at maturing junctions, allowing the recruitment of p120-catenin.MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF

    Rôle de l'association entre le récepteur adhésif de type N-cadhérine et les microdomaines membranaires

    No full text
    L'adhérence cellulaire médiée par les cadhérines est impliquée dans de nombreux processus cellulaires dont la myogenèse. J'ai montré, dans des myoblastes murins, qu'une partie de ces récepteurs adhésifs est présente dans les microdomaines membranaires enrichis en cholestérol, également appelés lipid rafts. Cette association est localisée au niveau de la jonction inter-cellulaire et participe à la stabilisation de ces récepteurs. De façon intéressante, le complexe adhésif fonctionnel est présent uniquement dans les lipid rafts car l'association de la p120-caténine à la N-cadhérine est retrouvée exclusivement au sein de ces structures membranaires. Finalement, j'ai montré que la formation du complexe N-cadhérine/p120-caténine dans les lipid rafts est nécessaire pour l'activation de la GTPase RhoA en aval de ce récepteur adhésif lors de l'induction de la myogenèseCell-cell adhesion mediated by cadherins is involved in a wide variety of cellular functions such as myogenesis. I have shown, in murine myoblasts, that a fraction of these adhesive receptors is associated with membrane microdomains enriched in cholesterol also called lipid rafts. This takes place mainly at the cell-cell contacts and participates in cadherins stabilization. Interestingly, the functional adhesive complex is present only in lipid rafts since the association between p120-catenin and N-cadherin is exclusively found in these membrane structures. Finally, I have shown that the formation of the N-cadherin/p120-catenin complex occurs in lipid rafts and is required for RhoA GTPase activation downstream of this adhesive receptor during myogenesis inductionMONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF

    Role de la GTPase RhoE dans la fusion des myoblastes et leur transformation

    No full text
    Les GTPases de la famille Rho sont impliquées dans de nombreux processus physiologiques comme la différenciation musculaire squelettique ou myogenèse, mais également dans la transformation cellulaire lorsqu'elles sont dérégulées. Nous avons montré que l'expression d'un membre atypique de cette famille, RhoE, est induite lors de la myogenèse, jusqu'à un maximum atteint au moment de la fusion des myoblastes en myotubes, avant de retrouver son niveau basal. Nous avons mis en évidence, par interférence ARN, que son extinction inhibe cette étape de fusion, à cause de défauts d'alignement et d'élongation des myoblastes. D'un point de vue mécanistique, RhoE participe à ce processus par la régulation négative des activités de la GTPase RhoA et de son effecteur la kinase ROCK1, deux évènements indispensables pour que la fusion ait lieu. Cette inhibition est médiée à la fois par l'activation de la protéine p190RhoGAP, qui inactive RhoA en favorisant l'hydrolyse du GTP, et également par une interaction directe avec la kinase ROCK1. Dans un deuxième temps, nous avons observé que l'expression de RhoE est fortement diminuée dans des lignées de rhabdomyosarcomes (RMS) et dans des myoblastes surexprimant la R-cadhérine, un marqueur de cette pathologie qui conduit à leur transformation via l'activation de la GTPase Rac1. L'inhibition de son activité permet d'ailleurs une restauration des niveaux de RhoE. De plus, nous avons pu montrer que cette diminution d'expression participe à l'acquisition du pouvoir invasif des cellules de RMS, phénomène qui est largement diminué lorsqu'on réexprime RhoE. L'utilisation, sur les cellules de RMS, de drogues inhibant respectivement RhoA ou ROCK1 conduit à une diminution de l'invasion cellulaire, suggérant qu'une fois de plus RhoE contrôle cette propriété en régulant les activités de RhoA et de son effecteur ROCK1Rho family GTPases are involved in various physiological processes, such as skeletal muscle differentiation, also called myogenesis, and, when they are misregulated, in cellular transformation. We have shown that the expression of an atypical member of the family, RhoE, is induced during myogenesis up to a maximum at fusion time, before resuming its basal level. Then, we report that its extinction by RNA interference blocked the fusion process because of myoblast alignment and elongation defects. Mechanistically, RhoE negatively regulates the activities of the GTPase RhoA and of its effector, the kinase ROCK1, which must be downregulated to allow myoblast fusion. This inhibition is mediated by the activation of p190RhoGAP, which enhances GTP hydrolysis by RhoA and also by direct interaction with ROCK1. Secondly, we observed that RhoE expression is strongly downregulated in rhabdomyosarcoma cell lines and in R-cadherin-expressing myoblasts. R-cadherin induces their transformation via the activation of Rac1 GTPase. Inhibition of Rac1 activity allows a rescue of RhoE level. Moreover, we have shown that this decrease participates in invasive properties of RMS cell lines. Conversely, this process is lost when we express exogenous RhoE in these cells. By using drugs that target selectively RhoA or ROCK1, we observed a decrease of invasiveness, meaning that RhoE controls this property by downregulating the activities of RhoA and its effector ROCK1MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF

    The small GTPases Cdc42Hs, Rac1 and RhoG delineate Raf-independent pathways that cooperate to transform NIH3T3 cells

    No full text
    International audienceBACKGROUND: Ras-mediated transformation of mammalian cells has been shown to activate multiple signalling pathways, including those involving mitogen-activated protein kinases and the small GTPase Rho. Members of the Rho family affect cell morphology by controlling the formation of actin-dependent structures: specifically, filopodia are induced by Cdc42Hs, lamellipodia and ruffles by Rac, and stress fibers by RhoA. In addition, Rho GTPases are involved in progression through the G1 phase of the cell cycle, and Rac1 and RhoA have recently been directly implicated in the morphogenic and mitogenic responses to transformation by oncogenic Ras. In order to examine the cross-talk between Ras and Rho proteins, we investigated the effects on focus-forming activity and cell growth of the Rho-family members Cdc42Hs, Rac1 and RhoG by expressing constitutively active or dominant-negative forms in NIH3T3 cells. RESULTS: Expression of Rac1 or RhoG modulated the saturation density to which the cells grew, probably by affecting the level of contact inhibition. Although all three GTPases were required for cell transformation mediated by Ras but not by constitutively active Raf, the selective activation of each GTPase was not sufficient to induce the formation of foci. The coordinated activation of Cdc42Hs, RhoG and Rac1, however, elicited a high focus-forming activity, independent of the mitogen-activated ERK and JNK protein kinase pathways. CONCLUSIONS: Ras-mediated transformation induces extensive changes in cell morphology which require the activity of members of the Rho family of GTPases. Our data show that the pattern of coordinated Rho family activation that elicits a focus-forming activity in NIH3T3 cells is distinct from the regulatory cascade that has been proposed for the control of actin-dependent structures in Swiss 3T3 cells
    corecore