10,383 research outputs found

    High-order optical nonlinearity at low light levels

    Full text link
    We observe a nonlinear optical process in a gas of cold atoms that simultaneously displays the largest reported fifth-order nonlinear susceptibility \chi^(5) = 1.9x10^{-12} (m/V)^4 and high transparency. The nonlinearity results from the simultaneous cooling and crystallization of the gas, and gives rise to efficient Bragg scattering in the form of six-wave-mixing at low-light-levels. For large atom-photon coupling strengths, the back-action of the scattered fields influences the light-matter dynamics. This system may have important applications in many-body physics, quantum information processing, and multidimensional soliton formation.Comment: 5 pages, 3 figure

    A Kaluza-Klein Model with Spontaneous Symmetry Breaking: Light-Particle Effective Action and its Compactification Scale Dependence

    Full text link
    We investigate decoupling of heavy Kaluza-Klein modes in an Abelian Higgs model with space-time topologies R3,1×S1\mathbb{R}^{3,1} \times S^{1} and R3,1×S1/Z2\mathbb{R}^{3,1} \times S^{1}/\mathbb{Z}_{2}. After integrating out heavy KK modes we find the effective action for the zero mode fields. We find that in the R3,1×S1\mathbb{R}^{3,1} \times S^{1} topology the heavy modes do not decouple in the effective action, due to the zero mode of the 5-th component of the 5-d gauge field A5A_{5}. Because A5A_{5} is a scalar under 4-d Lorentz transformations, there is no gauge symmetry protecting it from getting mass and A54A_{5}^{4} interaction terms after loop corrections. In addition, after symmetry breaking, we find new divergences in the A5A_{5} mass that did not appear in the symmetric phase. The new divergences are traced back to the gauge-goldstone mixing that occurs after symmetry breaking. The relevance of these new divergences to Symanzik's theorem is discussed. In order to get a more sensible theory we investigate the S1/Z2S^{1}/\mathbb{Z}_{2} compactification. With this kind of compact topology, the A5A_{5} zero mode disappears. With no A5A_{5}, there are no new divergences and the heavy modes decouple. We also discuss the dependence of the couplings and masses on the compactification scale. We derive a set of RG-like equations for the running of the effective couplings with respect to the compactification scale. It is found that magnitudes of both couplings decrease as the scale MM increases. The effective masses are also shown to decrease with increasing compactification scale. All of this opens up the possibility of placing constraints on the size of extra dimensions.Comment: 35 pages, 6 figure

    Premise Selection and External Provers for HOL4

    Full text link
    Learning-assisted automated reasoning has recently gained popularity among the users of Isabelle/HOL, HOL Light, and Mizar. In this paper, we present an add-on to the HOL4 proof assistant and an adaptation of the HOLyHammer system that provides machine learning-based premise selection and automated reasoning also for HOL4. We efficiently record the HOL4 dependencies and extract features from the theorem statements, which form a basis for premise selection. HOLyHammer transforms the HOL4 statements in the various TPTP-ATP proof formats, which are then processed by the ATPs. We discuss the different evaluation settings: ATPs, accessible lemmas, and premise numbers. We measure the performance of HOLyHammer on the HOL4 standard library. The results are combined accordingly and compared with the HOL Light experiments, showing a comparably high quality of predictions. The system directly benefits HOL4 users by automatically finding proofs dependencies that can be reconstructed by Metis

    Supersymmetric free-damped oscillators: Adaptive observer estimation of the Riccati parameter

    Full text link
    A supersymmetric class of free damped oscillators with three parameters has been obtained in 1998 by Rosu and Reyes through the factorization of the Newton equation. The supplementary parameter is the integration constant of the general Riccati solution. The estimation of the latter parameter is performed here by employing the recent adaptive observer scheme of Besancon et al., but applied in a nonstandard form in which a time-varying quantity containing the unknown Riccati parameter is estimated first. Results of computer simulations are presented to illustrate the good feasibility of this approach for a case in which the estimation is not easily accomplished by other meansComment: 8 pages, 6 figure

    Sharing HOL4 and HOL Light proof knowledge

    Full text link
    New proof assistant developments often involve concepts similar to already formalized ones. When proving their properties, a human can often take inspiration from the existing formalized proofs available in other provers or libraries. In this paper we propose and evaluate a number of methods, which strengthen proof automation by learning from proof libraries of different provers. Certain conjectures can be proved directly from the dependencies induced by similar proofs in the other library. Even if exact correspondences are not found, learning-reasoning systems can make use of the association between proved theorems and their characteristics to predict the relevant premises. Such external help can be further combined with internal advice. We evaluate the proposed knowledge-sharing methods by reproving the HOL Light and HOL4 standard libraries. The learning-reasoning system HOL(y)Hammer, whose single best strategy could automatically find proofs for 30% of the HOL Light problems, can prove 40% with the knowledge from HOL4

    Evidence for spin liquid ground state in SrDy2_2O4_4 frustrated magnet probed by muSR

    Full text link
    Muon spin relaxation (μ\muSR) measurements were carried out on SrDy2_2O4_4, a frustrated magnet featuring short range magnetic correlations at low temperatures. Zero-field muon spin depolarization measurements demonstrate that fast magnetic fluctuations are present from T=300T=300 K down to 20 mK. The coexistence of short range magnetic correlations and fluctuations at T=20T=20 mK indicates that SrDy2_2O4_4 features a spin liquid ground state. Large longitudinal fields affect weakly the muon spin depolarization, also suggesting the presence of fast fluctuations. For a longitudinal field of μ0H=2\mu_0H=2 T, a non-relaxing asymmetry contribution appears below T=6T=6 K, indicating considerable slowing down of the magnetic fluctuations as field-induced magnetically-ordered phases are approached.Comment: 6 pages, 4 figures, to be published as a proceeding of HFM2016 in Journal of Physics: Conference Series (JPCS

    All-Optical Switching with Transverse Optical Patterns

    Full text link
    We demonstrate an all-optical switch that operates at ultra-low-light levels and exhibits several features necessary for use in optical switching networks. An input switching beam, wavelength λ\lambda, with an energy density of 10−210^{-2} photons per optical cross section [σ=λ2/(2π)\sigma=\lambda^2/(2\pi)] changes the orientation of a two-spot pattern generated via parametric instability in warm rubidium vapor. The instability is induced with less than 1 mW of total pump power and generates several μ\muWs of output light. The switch is cascadable: the device output is capable of driving multiple inputs, and exhibits transistor-like signal-level restoration with both saturated and intermediate response regimes. Additionally, the system requires an input power proportional to the inverse of the response time, which suggests thermal dissipation does not necessarily limit the practicality of optical logic devices

    Laser driven launch vehicles for continuous access to space

    Get PDF
    The availability of megawatt laser systems in the next century will make laser launch systems from ground to orbit feasible and useful. Systems studies indicate launch capabilities of 1 ton payload per gigawatt laser power. Recent research in ground to orbit laser propulsion has emphasized laser supported detonation wave thrusters driven by repetitively pulsed infrared lasers. In this propulsion concept each laser repetition cycle consists of two pulses. A lower energy first pulse is used to vaporize a small amount of solid propellant and then after a brief expansion period, a second and higher energy laser pulse is used to drive a detonation wave through the expanded vapor. The results are reported of numerical studies comparing the detonation wave properties of various candidate propellants, and the simulation of thruster performance under realistic conditions. Experimental measurements designed to test the theoretical predictions are also presented. Measurements are discussed of radiance and opacity in absorption waves, and mass loss and momentum transfer. These data are interpreted in terms of specific impulse and energy conversion efficiency

    Archiving Complex Digital Artworks

    Get PDF
    The transmission of the documentation of changes made in each presentation of an artwork and the motivation behind each display are of importance to the continued preservation, re-exhibition and future understanding of artworks. However, it is generally acknowledged that existing digital archiving and documentation systems used by many museums are not suitable for complex digital artworks. Looking for an approach that can easily be adjusted, shared and adopted by others, this article focusses on open-source alternatives that also enable collaborative working to facilitate the sharing and changing of information. As an interdisciplinary team of conservators, researchers, artists and programmers, the authors set out to explore and compare the functionalities of two systems featuring version control: MediaWiki and Git. We reflect on their technical details, virtues and shortcomings for archiving complex digital artworks, while looking at the potential they offer for collaborative workflows
    • …
    corecore