19 research outputs found
Constraining the Variability and Binary Fraction of Galactic Center Young Stars
We present constraints on the variability and binarity of young stars in the
central 10 arcseconds (~0.4 pc) of the Milky Way Galactic Center (GC) using
Keck Adaptive Optics data over a 12 year baseline. Given our experiment's
photometric uncertainties, at least 36% of our sample's known early-type stars
are variable. We identified eclipsing binary systems by searching for periodic
variability. In our sample of spectroscopically confirmed and likely early-type
stars, we detected the two previously discovered GC eclipsing binary systems.
We derived the likely binary fraction of main sequence, early-type stars at the
GC via Monte Carlo simulations of eclipsing binary systems, and find that it is
at least 32% with 90% confidence.Comment: Accepted for publication in Proceedings of IAU Symposium 322: The
Multi-Messenger Astrophysics of the Galactic Centre, 2 pages, 1 figur
An Estimate of the Binary Star Fraction Among Young Stars at the Galactic Center: Possible Evidence of a Radial Dependence
We present the first estimate of the intrinsic binary fraction of young stars
across the central 0.4 pc surrounding the supermassive black hole
(SMBH) at the Milky Way Galactic center (GC). This experiment searched for
photometric variability in 102 young stars, using 119 nights of 10"-wide
adaptive optics imaging observations taken at Keck Observatory over 16 years in
the K'- and H-bands. We photometrically detected three binary stars, all of
which are situated more than 1" (0.04 pc) from the SMBH and one of which,
S2-36, is newly reported here with spectroscopic confirmation. To convert the
observed binary fraction into an estimate of the underlying binary fraction, we
determined experiment sensitivity through detailed light curve simulations,
incorporating photometric effects of eclipses, irradiation, and tidal
distortion in binaries. The simulations assumed a population of young binaries,
with stellar ages (4 Myr) and masses matched to the most probable values
measured for the GC young star population and underlying binary system
parameters similar to those of local massive stars. The detections and
simulations imply young, massive stars in the GC have a stellar binary fraction
71% (68% confidence), or 42% (95% confidence). This inferred GC
young star binary fraction is consistent with that typically seen in young
stellar populations in the solar neighborhood. Furthermore, our measured binary
fraction is significantly higher than that recently reported by Chu et al.
(2023) based on RV measurements of young stars <~1" of the SMBH. Constrained
with these two studies, the probability that the same underlying young binary
fraction extends across the entire region is <1.4%. This tension provides
support for a radial dependence of the binary star fraction and, therefore, for
the dynamical predictions of binary merger and evaporation events close to the
SMBH.Comment: 51 pages, 27 figures, 7 tables. Accepted for publication in The
Astrophysical Journal. Abstract revised for final manuscrip
Unprecedented Near-infrared Brightness and Variability of Sgr A*
The electromagnetic counterpart to the Galactic center supermassive black hole, Sgr A*, has been observed in the near-infrared for over 20 yr and is known to be highly variable. We report new Keck Telescope observations showing that Sgr A* reached much brighter flux levels in 2019 than ever measured at near-infrared wavelengths. In the K' band, Sgr A* reached flux levels of ~6 mJy, twice the level of the previously observed peak flux from >13,000 measurements over 130 nights with the Very Large Telescope and Keck Telescopes. We also observe a factor of 75 change in flux over a 2 hr time span with no obvious color changes between 1.6 and 2.1 μm. The distribution of flux variations observed this year is also significantly different than the historical distribution. Using the most comprehensive statistical model published, the probability of a single night exhibiting peak flux levels observed this year, given historical Keck observations, is less than 0.3%. The probability of observing flux levels that are similar to all four nights of data in 2019 is less than 0.05%. This increase in brightness and variability may indicate a period of heightened activity from Sgr A* or a change in its accretion state. It may also indicate that the current model is not sufficient to model Sgr A* at high flux levels and should be updated. Potential physical origins of Sgr A*'s unprecedented brightness may be from changes in the accretion flow as a result of the star S0-2's closest passage to the black hole in 2018, or from a delayed reaction to the approach of the dusty object G2 in 2014. Additional multi-wavelength observations will be necessary to both monitor Sgr A* for potential state changes and to constrain the physical processes responsible for its current variability
The Galactic Center with Roman
We advocate for a Galactic center (GC) field to be added to the Galactic
Bulge Time Domain Survey (GBTDS). The new field would yield high-cadence
photometric and astrometric measurements of an unprecedented 3.3
million stars toward the GC. This would enable a wide range of science cases,
such as finding star-compact object binaries that may ultimately merge as
LISA-detectable gravitational wave sources, constraining the mass function of
stars and compact objects in different environments, detecting populations of
microlensing and transiting exoplanets, studying stellar flares and variability
in young and old stars, and monitoring accretion onto the central supermassive
black hole. In addition, high-precision proper motions and parallaxes would
open a new window into the large-scale dynamics of stellar populations at the
GC, yielding insights into the formation and evolution of galactic nuclei and
their co-evolution with the growth of the supermassive black hole. We discuss
the possible trade-offs between the notional GBTDS and the addition of a GC
field with either an optimal or minimal cadence. Ultimately, the addition of a
GC field to the GBTDS would dramatically increase the science return of Roman
and provide a legacy dataset to study the mid-plane and innermost regions of
our Galaxy.Comment: 19 pages, 3 figures. Submitted to the NASA Roman Core Community
Surveys White Paper Cal
The JWST Galactic Center Survey -- A White Paper
The inner hundred parsecs of the Milky Way hosts the nearest supermassive
black hole, largest reservoir of dense gas, greatest stellar density, hundreds
of massive main and post main sequence stars, and the highest volume density of
supernovae in the Galaxy. As the nearest environment in which it is possible to
simultaneously observe many of the extreme processes shaping the Universe, it
is one of the most well-studied regions in astrophysics. Due to its proximity,
we can study the center of our Galaxy on scales down to a few hundred AU, a
hundred times better than in similar Local Group galaxies and thousands of
times better than in the nearest active galaxies. The Galactic Center (GC) is
therefore of outstanding astrophysical interest. However, in spite of intense
observational work over the past decades, there are still fundamental things
unknown about the GC. JWST has the unique capability to provide us with the
necessary, game-changing data. In this White Paper, we advocate for a JWST
NIRCam survey that aims at solving central questions, that we have identified
as a community: i) the 3D structure and kinematics of gas and stars; ii)
ancient star formation and its relation with the overall history of the Milky
Way, as well as recent star formation and its implications for the overall
energetics of our galaxy's nucleus; and iii) the (non-)universality of star
formation and the stellar initial mass function. We advocate for a large-area,
multi-epoch, multi-wavelength NIRCam survey of the inner 100\,pc of the Galaxy
in the form of a Treasury GO JWST Large Program that is open to the community.
We describe how this survey will derive the physical and kinematic properties
of ~10,000,000 stars, how this will solve the key unknowns and provide a
valuable resource for the community with long-lasting legacy value.Comment: This White Paper will be updated when required (e.g. new authors
joining, editing of content). Most recent update: 24 Oct 202
abhimat/binary_fraction: binary_fraction v1.0.0
Binary fraction software finalized as a python package for initial ApJ submission of the Gautam et al. (2023) pape
abhimat/phitter: Phitter v0.1.0
Initial pre-release of Phitter. More work in documentation and package structure is required to have this set up and released as a full python package
Recommended from our members
An Estimate of the Binary Star Fraction among Young Stars at the Galactic Center: Possible Evidence of a Radial Dependence
We present the first estimate of the intrinsic binary fraction of young stars across the central ≈0.4 pc surrounding the supermassive black hole (SMBH) at the Milky Way Galactic center (GC). This experiment searched for photometric variability in 102 spectroscopically confirmed young stars, using 119 nights of 10″ wide adaptive optics imaging observations taken at W. M. Keck Observatory over 16 yr in the K ′ -[2.1 μm] and H-[1.6 μm] bands. We photometrically detected three binary stars, all of which are situated more than 1″ (0.04 pc) from the SMBH and one of which, S2-36, is newly reported here with spectroscopic confirmation. All are contact binaries or have photometric variability originating from stellar irradiation. To convert the observed binary fraction into an estimate of the underlying binary fraction, we determined the experimental sensitivity through detailed light-curve simulations, incorporating photometric effects of eclipses, irradiation, and tidal distortion in binaries. The simulations assumed a population of young binaries, with stellar ages (4 Myr) and masses matched to the most probable values measured for the GC young star population, and underlying binary system parameters (periods, mass ratios, and eccentricities) similar to those of local massive stars. As might be expected, our experimental sensitivity decreases for eclipses narrower in phase. The detections and simulations imply that the young, massive stars in the GC have a stellar binary fraction ≥71% (68% confidence), or ≥42% (95% confidence). This inferred GC young star binary fraction is consistent with that typically seen in young stellar populations in the solar neighborhood. Furthermore, our measured binary fraction is significantly higher than that recently reported by Chu et al. based on radial velocity measurements for stars ≲1″ of the SMBH. Constrained with these two studies, the probability that the same underlying young star binary fraction extends across the entire region is <1.4%. This tension provides support for a radial dependence of the binary star fraction, and therefore, for the dynamical predictions of binary merger and evaporation events close to the SMBH