90 research outputs found

    A simple recipe to detect possible C-Odd effects in high energy pˉp\bar p p and pppp

    Full text link
    We provide a theorem to suggest that t=0t=0 data may already be sufficient to detect possible asymptotic C-odd (Odderon) contributions. This can be done by comparing pˉp\bar p p and pppp t=0t=0 observables such as total cross sections, forward angular distributions and ratios of real to imaginary forward amplitudes for which well defined model independent correlations {must} exist which could already show up at RHIC energy but definitely at LHC energies.Comment: 10 pages in TeX, no figur

    How can the Odderon be detected at RHIC and LHC

    Full text link
    The Odderon remains an elusive object, 33 years after its invention. The Odderon is now a fundamental object in QCD and CGC and it has to be found experimentally if QCD and CGC are right. In the present paper, we show how to find it at RHIC and LHC. The most spectacular signature of the Odderon is the predicted difference between the differential cross-sections for proton-proton and antiproton-proton at high s and moderate t. The experiment can be done by using the STAR detector at RHIC and by combining these future data with the already present UA4/2 data. The Odderon could also be found by ATLAS exeperiment at LHC by performing a high-precision measurement of the real part of the hadron elastic scattering amplitude at small t.Comment: 14 pages, 16 figures, two typographical errors corrected and acknowledgments adde

    Solution of the Odderon Problem

    Get PDF
    The intercept of the odderon trajectory is derived, by finding the spectrum of the second integral of motion of the three reggeon system in high energy QCD. When combined with earlier solution of the appropriate Baxter equation, this leads to the determination of the low lying states of that system. In particular, the energy of the lowest state gives the intercept of the odderon alpha_O(0)=1-0.2472 alpha_s N_c/pi.Comment: 11 pages, 2 Postscript figure

    Forward observables at RHIC, the Tevatron run II and the LHC

    Get PDF
    We present predictions on the total cross sections and on the ratio of the real part to the imaginary part of the elastic amplitude (rho parameter) for present and future pp and pbar p colliders, and on total cross sections for gamma p -> hadrons at cosmic-ray energies and for gamma gamma -> hadrons up to sqrt(s)=1 TeV. These predictions are based on a study of many possible analytic parametrisations and invoke the current hadronic dataset at t=0. The uncertainties on total cross sections, including the systematic theoretical errors, reach 1% at RHIC, 3% at the Tevatron, and 10% at the LHC, whereas those on the rho parameter are respectively 10%, 17%, and 26%.Comment: 11 pages, 2 figures, LaTeX, presented at the Second International "Cetraro" Workshop & NATO Advanced Research Workshop "Diffraction 2002", Alushta, Crimea, Ukraine, August 31 - September 6, 200

    Heisenberg's Universal (lns)**2 Increase of Total Cross Sections

    Get PDF
    The (lns)**2 behaviour of total cross-sections, first obtained by Heisenberg 50 years ago, receives now increased interest both on phenomenological and theoretical levels. In this paper we present a modification of the Heisenberg's model in connection with the presence of glueballs and we show that it leads to a realistic description of all existing hadron total cross-section data.Comment: 6 pages, 3 figure

    Benchmarks for the Forward Observables at RHIC, the Tevatron-run II and the LHC

    Get PDF
    We present predictions on the total cross sections and on the ratio of the real part to the imaginary part of the elastic amplitude (rho parameter) for present and future pp and pbar p colliders, and on total cross sections for gamma p -> hadrons at cosmic-ray energies and for gamma gamma-> hadrons up to sqrt{s}=1 TeV. These predictions are based on an extensive study of possible analytic parametrisations invoking the biggest hadronic dataset available at t=0. The uncertainties on total cross sections, including the systematic errors due to contradictory data points from FNAL, can reach 1.9% at RHIC, 3.1% at the Tevatron, and 4.8% at the LHC, whereas those on the rho parameter are respectively 5.4%, 5.2%, and 5.4%.Comment: 11 pages, 2 figures, 4 tables, RevTeX

    Analytic Amplitudes for Hadronic Forward Scattering : COMPETE Update

    Get PDF
    We consider several classes of analytic parametrizations of hadronic scattering amplitudes, and compare their predictions to all available forward data in hadron-hadron, gamma-p and gamma-gamma reactions. Although these parametrizations are very close for SQRTs larger than 9 GeV, it turns out that they differ markedly at low energy, where a universal Pomeron term like ln**2 s enables one to extend the fit down to SQRTs equal to 4 GeV. We present predictions on the total cross sections and on the ratio of the real part to the imaginary part of the elastic amplitude (RHO parameter) for present and future pp and antipp colliders, and on total cross sections for gamma-p into hadrons at cosmic-ray energies and for gamma-gamma into hadrons up to SQRTs equal to 1 TeV.Comment: 3 pages, 3 tables. To be published in the Proceedings of the 31st International Conference on High Energy Physics (ICHEP 2002), Amsterdam, The Netherlands, 24-31 July 200

    The Goldberger-Miyazawa-Oehme sum rule revisited

    Full text link
    The Goldberger-Miyazawa-Oehme sum rule is used to extract the pion-nucleon coupling constant from experimental π\piN information. Chiral perturbation theory is exploited in relating the pionic hydrogen s-wave level shift and width results to the appropriate scattering lengths. The deduced value for the coupling is f2=0.075±0.002f^2 = 0.075 \pm 0.002, where the largest source of uncertainty is the determination of the s-wave πp\pi^- p scattering length from the atomic level shift measurement.Comment: 4 pages, 1 figure. v2: Revised the second last paragraph of 5th section and clarified the electromagnetic corrections (Tromborg vs. χ\chiPT). Also removed the KH80 slope from the fig.

    Symmetry Properties of the Effective Action for High-Energy Scattering in QCD

    Full text link
    We study the effective action describing high-energy scattering processes in the multi-Regge limit of QCD, which should provide the starting point for a new attempt to overcome the limitations of the leading logarithmic and the eikonal approximations. The action can be obtained via simple graphical rules or by integrating in the QCD functional integral over momentum modes of gluon and quark fields that do not appear explicitely as scattering or exchanged particles in the considered processes. The supersymmetry is used to obtain the terms in the action involving quarks fields from the pure gluonic ones. We observe a Weizs\"acker - Williams type relations between terms describing scattering and production of particles.Comment: 37 pages LATEX, 1 Table and 7 figures using package FEYNMA

    Direct solution of the hard pomeron problem for arbitrary conformal weight

    Get PDF
    A new method is applied to solve the Baxter equation for the one dimensional system of noncompact spins. Dynamics of such an ensemble is equivalent to that of a set of reggeized gluons exchanged in the high energy limit of QCD amplitudes. The technique offers more insight into the old calculation of the intercept of hard Pomeron, and provides new results in the odderon channel.Comment: Contribution to the ICHEP96 Conference, July 1996, Warsaw, Poland. LaTeX, 4 pages, 3 epsf figures, includes modified stwol.sty file. Some references were revise
    corecore