44 research outputs found

    Role of peptides in diagnostics

    Get PDF
    The specificity of a diagnostic assay depends upon the purity of the biomolecules used as a probe. To get specific and accurate information of a disease, the use of synthetic peptides in diagnostics have increased in the last few decades, because of their high purity profile and ability to get modified chemically. The discovered peptide probes are used either in imaging diagnostics or in non-imaging diagnostics. In non-imaging diagnostics, techniques such as Enzyme-Linked Immunosorbent Assay (ELISA), lateral flow devices (i.e., point-of-care testing), or microarray or LC-MS/MS are used for direct analysis of biofluids. Among all, peptide-based ELISA is considered to be the most preferred technology platform. Similarly, peptides can also be used as probes for imaging techniques, such as single-photon emission computed tomography (SPECT) and positron emission tomography (PET). The role of radiolabeled peptides, such as somatostatin receptors, interleukin 2 receptor, prostate specific membrane antigen, αβ3 integrin receptor, gastrin-releasing peptide, chemokine receptor 4, and urokinase-type plasminogen receptor, are well established tools for targeted molecular imaging ortumor receptor imaging. Low molecular weight peptides allow a rapid clearance from the blood and result in favorable target-to-non-target ratios. It also displays a good tissue penetration and non-immunogenicity. The only drawback of using peptides is their potential low metabolic stability. In this review article, we have discussed and evaluated the role of peptides in imaging and non-imaging diagnostics. The most popular non-imaging and imaging diagnostic platforms are discussed, categorized, and ranked, as per their scientific contribution on PUBMED. Moreover, the applicability of peptide-based diagnostics in deadly diseases, mainly COVID-19 and cancer, is also discussed in detail

    A novel 18F-labelled high affinity agent for PET imaging of the translocator protein

    Get PDF
    The translocator protein (TSPO) is an important target for imaging focal neuroinflammation in diseases such as brain cancer, stroke and neurodegeneration, but current tracers for non-invasive imaging of TSPO have important limitations. We present the synthesis and evaluation of a novel 3-fluoromethylquinoline-2-carboxamide, AB5186, which was prepared in eight steps using a one-pot two component indium(III)-catalysed reaction for the rapid and efficient assembly of the 4-phenylquinoline core. Biological assessment and the implementation of a physicochemical study showed AB5186 to have low nanomolar affinity for TSPO, as well as optimal plasma protein binding and membrane permeability properties. Generation of [18F]-AB5186 through 18F incorporation was achieved in good radiochemical yield and subsequent in vitro and ex vivo autoradiography revealed the ability of this compound to bind with specificity to TSPO in mouse glioblastoma xenografts. Initial positron emission tomography imaging of a glioma bearing mouse and a healthy baboon support the potential for [18F]-AB5186 use as a radiotracer for non-invasive TSPO imaging in vivo

    A Review of Alternative Proteins For Vegan Diets: Sources, Physico-Chemical Properties, Nutritional Equivalency, and Consumer Acceptance

    Get PDF
    Alternate proteins are gaining popularity as a more sustainable and environmentally friendly alternative to animal-based proteins. These proteins are often considered healthier and are suitable for people following a vegetarian or vegan diet. Alternative proteins can be recovered from natural sources like legumes, grains, nuts, and seeds, while single cell proteins (mycoproteins), and algal proteins are being developed using cutting-edge technology to grow fungus, yeast and algal cells in a controlled environment, creating a more sustainable source of protein. Although, the demand for alternative protein products is increasing, there still happens to be a large gap in use among the general consumers mainly stemming from its lower bioavailability, lack of nutritional equivalency and reduced digestibility compared to animal proteins. The focus of the review is to emphasize on various sources and technologies for recovering alternative proteins for vegan diets. The review discusses physicochemical properties of alternative proteins and emphasise on the role of various processing technologies that can change the digestibility and bioavailability of these proteins. It further accentuates the nutritional equivalency and environmental sustainability of alternative protein against the conventional proteins from animals. The food laws surrounding alternative proteins as well as the commercial potential and consumer acceptance of alternative protein products are also highlighted. Finally, key challenges to improve the consumer acceptability and market value of plant-based proteins would be in achieving nutrient equivalency and enhance bioavailability and digestibility while maintaining the same physicochemical properties, taste, texture, as animal proteins, has also been highlighted

    Synthesis and evaluation of a radioiodinated tracer with specificity for poly(ADP-ribose) polymerase-1 (PARP-1) in vivo

    Get PDF
    Interest in nuclear imaging of poly(ADP-ribose) polymerase-1 (PARP-1) has grown in recent years due to the ability of PARP-1 to act as a biomarker for glioblastoma and increased clinical use of PARP-1 inhibitors. This study reports the identification of a lead iodinated analog 5 of the clinical PARP-1 inhibitor olaparib as a potential single-photon emission computed tomography (SPECT) imaging agent. Compound 5 was shown to be a potent PARP-1 inhibitor in cell-free and cellular assays, and it exhibited mouse plasma stability but approximately 3-fold greater intrinsic clearance when compared to olaparib. An (123)I-labeled version of 5 was generated using solid state halogen exchange methodology. Ex vivo biodistribution studies of [(123)I]-5 in mice bearing subcutaneous glioblastoma xenografts revealed that the tracer had the ability to be retained in tumour tissue and bind to PARP-1 with specificity. These findings support further investigations of [(123)I]-5 as a non-invasive PARP-1 SPECT imaging agent

    An 18F-labeled poly(ADP-ribose) polymerase positron emission tomography imaging agent

    Get PDF
    Poly(ADP-ribose) polymerase (PARP) is involved in repair of DNA breaks and is over-expressed in a wide variety of tumors, making PARP an attractive biomarker for positron emission tomography (PET) and single photon emission computed tomography imaging. Consequently, over the past decade, there has been a drive to develop nuclear imaging agents targeting PARP. Here, we report the discovery of a PET tracer that is based on the potent PARP inhibitor olaparib (1). Our lead PET tracer candidate, [18F]20, was synthesized and evaluated as a potential PARP PET radiotracer in mice bearing subcutaneous glioblastoma xenografts using ex vivo biodistribution and PET−magnetic resonance imaging techniques. Results showed that [18F]20 could be produced in a good radioactivity yield and exhibited specific PARP binding allowing visualization of tumors overexpressing PARP. [18F]20 is therefore a potential candidate radiotracer for in vivo PARP PET imaging

    Radiopharmaceuticals for imaging chronic lymphocytic inflammation

    Get PDF
    In the last few decades, a number of radiopharmaceuticals for imaging inflammation have been proposed that differ in their specificity and mechanism of uptake in inflamed foci as compared to the traditional inflammation imaging agents. Radiolabelled cytokines represent a reliable tool for the preclinical diagnosis of chronic inflammatory processes, even before anatomical and functional changes occur in affected tissues. Moreover, the introduction of radiolabelled monoclonal antibodies and sophisticated technique like PET/CT now make the field of inflammation imaging highly specific and accurate. In this review, different approaches of the established and experimental radiopharmaceuticals for imaging of chronic inflammation are discussed.Nas últimas décadas, foram propostos vários radiofármacos para obtenção de imagens de sítios de inflamação, diferindo em suas especificidades e mecanismos de captação quando comparados aos tradicionais agentes utilizados para essa finalidade. Citocinas radiomarcadas representam uma ferramenta confiável para o diagnóstico pré-clinico precoce de processos inflamatórios crônicos, anterior às alterações anatômicas e funcionais, em tecidos afetados. Além disso, a introdução de anticorpos monoclonais radiomarcados e técnicas sofisticadas, como PET/CT, tornaram a obtenção de imagens de focos de inflamação altamente específica e apurada. Nesta revisão, diferentes abordagens com radiofármacos já bem estabelecidos e com outros em nível experimental para a obtenção de imagens de sítios de inflamação crônica são discutidas

    High molar activity [18F]tetrafluoroborate synthesis for sodium iodide symporter imaging by PET

    Get PDF
    Background: Sodium iodide symporter (NIS) imaging by positron emission tomography (PET) is gaining traction in nuclear medicine, with an increasing number of human studies being published using fluorine-18 radiolabelled tetrafluoroborate ([18F]TFB). Clinical success of any radiotracer relies heavily on its accessibility, which in turn depends on the availability of robust radiolabelling procedures providing a radiotracer in large quantities and of high radiopharmaceutical quality. Results: Here we publish an improved radiolabelling method and quality control procedures for high molar activity [18F]TFB. The use of ammonium hydroxide for [18F]fluoride elution, commercially available boron trifluoride-methanol complex dissolved in acetonitrile as precursor and removal of unreacted [18F]fluoride on Florisil solid-phase extraction cartridges resulted in the reliable production of [18F]TFB on SYNTHRA and TRACERLAB FXFN automated synthesizers with radiochemical yields in excess of 30%, radiochemical purities in excess of 98% and molar activities in the range of 34–217 GBq/µmol at the end of synthesis. PET scanning of a mouse lung tumour model carrying a NIS reporter gene rendered images of high quality and improved sensitivity. Conclusions: A novel automated radiosynthesis procedure for [18F]tetrafluoroborate has been developed that provides the radiotracer with high molar activity, suitable for preclinical imaging of NIS reporter gene
    corecore