24 research outputs found
Investigation of COVID-19 comorbidities reveals genes and pathways coincident with the SARS-CoV-2 viral disease.
The emergence of the SARS-CoV-2 virus and subsequent COVID-19 pandemic initiated intense research into the mechanisms of action for this virus. It was quickly noted that COVID-19 presents more seriously in conjunction with other human disease conditions such as hypertension, diabetes, and lung diseases. We conducted a bioinformatics analysis of COVID-19 comorbidity-associated gene sets, identifying genes and pathways shared among the comorbidities, and evaluated current knowledge about these genes and pathways as related to current information about SARS-CoV-2 infection. We performed our analysis using GeneWeaver (GW), Reactome, and several biomedical ontologies to represent and compare common COVID-19 comorbidities. Phenotypic analysis of shared genes revealed significant enrichment for immune system phenotypes and for cardiovascular-related phenotypes, which might point to alleles and phenotypes in mouse models that could be evaluated for clues to COVID-19 severity. Through pathway analysis, we identified enriched pathways shared by comorbidity datasets and datasets associated with SARS-CoV-2 infection
MIAME/Plant – adding value to plant microarrray experiments
Appropriate biological interpretation of microarray data calls for relevant experimental annotation. The widely accepted MIAME guidelines provide a generic, organism-independant standard for minimal information about microarray experiments. In its overall structure, MIAME is very general and specifications cover mostly technical aspects, while relevant organism-specific information useful to understand the underlying experiments is largely missing. If plant biologists want to use results from published microarray experiments, they need detailed information about biological aspects, such as growth conditions, harvesting time or harvested organ(s). Here, we propose MIAME/Plant, a standard describing which biological details to be captured for describing microarray experiments involving plants. We expect that a more detailed and more systematic annotation of microarray experiments will greatly increase the use of transcriptome data sets for the scientific community. The power and value of systematic annotation of microarray data is convincingly demonstrated by data warehouses such as Genevestigator(® )or NASCArrays, and better experimental annotation will make these applications even more powerful
Curating gene sets: challenges and opportunities for integrative analysis.
Genomic data interpretation often requires analyses that move from a gene-by-gene focus to a focus on sets of genes that are associated with biological phenomena such as molecular processes, phenotypes, diseases, drug interactions or environmental conditions. Unique challenges exist in the curation of gene sets beyond the challenges in curation of individual genes. Here we highlight a literature curation workflow whereby gene sets are curated from peer-reviewed published data into GeneWeaver (GW), a data repository and analysis platform. We describe the system features that allow for a flexible yet precise curation procedure. We illustrate the value of curation by gene sets through analysis of independently curated sets that relate to the integrated stress response, showing that sets curated from independent sources all share significant Jaccard similarity. A suite of reproducible analysis tools is provided in GW as services to carry out interactive functional investigation of user-submitted gene sets within the context of over 150 000 gene sets constructed from publicly available resources and published gene lists. A curation interface supports the ability of users to design and maintain curation workflows of gene sets, including assigning, reviewing and releasing gene sets within a curation project context
Mouse Phenome Database: a data repository and analysis suite for curated primary mouse phenotype data.
The Mouse Phenome Database (MPD; https://phenome.jax.org) is a widely accessed and highly functional data repository housing primary phenotype data for the laboratory mouse accessible via APIs and providing tools to analyze and visualize those data. Data come from investigators around the world and represent a broad scope of phenotyping endpoints and disease-related traits in naïve mice and those exposed to drugs, environmental agents or other treatments. MPD houses rigorously curated per-animal data with detailed protocols. Public ontologies and controlled vocabularies are used for annotation. In addition to phenotype tools, genetic analysis tools enable users to integrate and interpret genome-phenome relations across the database. Strain types and populations include inbred, recombinant inbred, F1 hybrid, transgenic, targeted mutants, chromosome substitution, Collaborative Cross, Diversity Outbred and other mapping populations. Our new analysis tools allow users to apply selected data in an integrated fashion to address problems in trait associations, reproducibility, polygenic syndrome model selection and multi-trait modeling. As we refine these tools and approaches, we will continue to provide users a means to identify consistent, quality studies that have high translational relevance
Mouse Phenome Database: towards a more FAIR-compliant and TRUST-worthy data repository and tool suite for phenotypes and genotypes.
The Mouse Phenome Database (MPD; https://phenome.jax.org; RRID:SCR_003212), supported by the US National Institutes of Health, is a Biomedical Data Repository listed in the Trans-NIH Biomedical Informatics Coordinating Committee registry. As an increasingly FAIR-compliant and TRUST-worthy data repository, MPD accepts phenotype and genotype data from mouse experiments and curates, organizes, integrates, archives, and distributes those data using community standards. Data are accompanied by rich metadata, including widely used ontologies and detailed protocols. Data are from all over the world and represent genetic, behavioral, morphological, and physiological disease-related characteristics in mice at baseline or those exposed to drugs or other treatments. MPD houses data from over 6000 strains and populations, representing many reproducible strain types and heterogenous populations such as the Diversity Outbred where each mouse is unique but can be genotyped throughout the genome. A suite of analysis tools is available to aggregate, visualize, and analyze these data within and across studies and populations in an increasingly traceable and reproducible manner. We have refined existing resources and developed new tools to continue to provide users with access to consistent, high-quality data that has translational relevance in a modernized infrastructure that enables interaction with a suite of bioinformatics analytic and data services
Petabyte-scale innovations at the European Nucleotide Archive
Dramatic increases in the throughput of nucleotide sequencing machines, and the promise of ever greater performance, have thrust bioinformatics into the era of petabyte-scale data sets. Sequence repositories, which provide the feed for these data sets into the worldwide computational infrastructure, are challenged by the impact of these data volumes. The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/embl), comprising the EMBL Nucleotide Sequence Database and the Ensembl Trace Archive, has identified challenges in the storage, movement, analysis, interpretation and visualization of petabyte-scale data sets. We present here our new repository for next generation sequence data, a brief summary of contents of the ENA and provide details of major developments to submission pipelines, high-throughput rule-based validation infrastructure and data integration approaches
Mouse phenome database: curated data repository with interactive multi-population and multi-trait analyses.
The Mouse Phenome Database continues to serve as a curated repository and analysis suite for measured attributes of members of diverse mouse populations. The repository includes annotation to community standard ontologies and guidelines, a database of allelic states for 657 mouse strains, a collection of protocols, and analysis tools for flexible, interactive, user directed analyses that increasingly integrates data across traits and populations. The database has grown from its initial focus on a standard set of inbred strains to include heterogeneous mouse populations such as the Diversity Outbred and mapping crosses and well as Collaborative Cross, Hybrid Mouse Diversity Panel, and recombinant inbred strains. Most recently the system has expanded to include data from the International Mouse Phenotyping Consortium. Collectively these data are accessible by API and provided with an interactive tool suite that enables users\u27 persistent selection, storage, and operation on collections of measures. The tool suite allows basic analyses, advanced functions with dynamic visualization including multi-population meta-analysis, multivariate outlier detection, trait pattern matching, correlation analyses and other functions. The data resources and analysis suite provide users a flexible environment in which to explore the basis of phenotypic variation in health and disease across the lifespan
EMBL Nucleotide Sequence Database: developments in 2005
The EMBL Nucleotide Sequence Database () at the EMBL European Bioinformatics Institute, UK, offers a comprehensive set of publicly available nucleotide sequence and annotation, freely accessible to all. Maintained in collaboration with partners DDBJ and GenBank, coverage includes whole genome sequencing project data, directly submitted sequence, sequence recorded in support of patent applications and much more. The database continues to offer submission tools, data retrieval facilities and user support. In 2005, the volume of data offered has continued to grow exponentially. In addition to the newly presented data, the database encompasses a range of new data types generated by novel technologies, offers enhanced presentation and searchability of the data and has greater integration with other data resources offered at the EBI and elsewhere. In stride with these developing data types, the database has continued to develop submission and retrieval tools to maximise the information content of submitted data and to offer the simplest possible submission routes for data producers. New developments, the submission process, data retrieval and access to support are presented in this paper, along with links to sources of further information