38 research outputs found
Altered splicing of CEACAM1 in breast cancer: Identification of regulatory sequences that control splicing of CEACAM1 into long or short cytoplasmic domain isoforms
<p>Abstract</p> <p>Background</p> <p>Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a cell adhesion molecule expressed in a variety of cell types is a putative tumor suppressor gene. Alternative splicing of CEACAM1 generates 11 different splice variants, which include 1–4 ectodomains with either short or long cytoplasmic domain generated by the exclusion (CEACAM1-S) or inclusion (CEACAM1-L) of exon 7. Studies in rodents indicate that optimal ratios of CEACAM1 splice variants are required to inhibit colonic tumor cell growth.</p> <p>Results</p> <p>We show that CEACAM1 is expressed in a tissue specific manner with significant differences in the ratios of its short (CEACAM1-S) and long (CEACAM1-L) cytoplasmic domain splice variants. Importantly, we find dramatic differences between the ratios of S:L isoforms in normal breast tissues versus breast cancer specimens, suggesting that altered splicing of CEACAM1 may play an important role in tumorogenesis. Furthermore, we have identified two regulatory <it>cis</it>-acting elements required for the alternative splicing of CEACAM1. Replacement of these regulatory elements by human β-globin exon sequences resulted in exon 7-skipped mRNA as the predominant product. Interestingly, while insertion of exon 7 in a β-globin reporter gene resulted in its skipping, exon 7 along with the flanking intron sequences recapitulated the alternative splicing of CEACAM1.</p> <p>Conclusion</p> <p>Our results indicate that a network of regulatory elements control the alternative splicing of CEACAM1. These findings may have important implications in therapeutic modalities of CEACAM1 linked human diseases.</p
Formulation and Evaluation of Guggul Lipid Nanovesicles for Transdermal Delivery of Aceclofenac
Context. Most new drugs have low water solubility and liposome is an important formulation to administer such drugs; however, it is quite unstable and has negligible systemic absorption. Objective. Aceclofenac nanovesicles were made using guggul lipid for formulating stable transdermal formulation. Materials and Methods. Guggul lipid was formulated into vesicles along with cholesterol and dicetyl phosphate using film hydration method. The formulations were analyzed for physicochemical properties and stability. Then its skin permeation and anti-inflammatory activity were determined. Results. Both categories of vesicles (PC and GL) showed optimum physicochemical properties; however, accelerated stability study showed considerable differences. GL-1 was appreciably stable for over 6 months at 4°C. Corresponding gels (PCG-1 and GLG-1) showed Cmax values at 4.98 and 7.32 μg/mL along with the Tmax values at 4 and 8 hours, respectively. GLG-1 inhibited edema production by 90.81% in 6 hours. Discussion. PC liposomes are unstable at higher temperature and upon longer storage. The formulation with higher lipid content (GL-1) showed good drug retention after 24 hours and appreciable stability both at higher temperature and for longer duration. Guggul lipid being a planar molecule might be stacked in vesicle wall with cholesterol. Conclusion. The composition of the nanovesicle played an important role in stability and drug permeation. Guggul lipid is suitable for producing stable vesicles
Pharmacodynamic and Pharmacogenomic study of the nanoparticle conjugate of camptothecin CRLX101 for the treatment of cancer
CRLX101 is a nanopharmaceutical consisting of cyclodextrin-based polymer molecule and camptothecin. The CRLX101 nanoparticle is designed to concentrate and slowly release camptothecin in tumors over an extended period of time. Tumor biopsy and blood samples collected from patients with advanced solid malignancies before and after CRLX101 treatment are subjected to immunohistochemistry and pharmacogenomics. The expression of Topoisomerase-1, Ki-67, CaIX, CD31 and VEGF decreased after CRLX101 treatment. The expressions of these proteins are inversely proportional with survival duration of the patients. The Drug Metabolism Enzymes and Transporters (DMET) array shows an allele frequency in patients similar to global populations with none of the SNPs associated with toxicity. The results suggest that the observed lower toxicity is not likely be due to different genotypes in SNPs. CRLX101 demonstrates a promising anti-tumor activity in heavily pre-treated or treatment-refractory solid tumor malignancies presumably by inhibition of proliferation and angiogenesis correlating with tumor growth inhibition
Sensitive detection of Trypanosoma evansi infection by polymerase chain reaction targeting invariable surface glycoprotein gene
Trypanosoma evansi, an extracellular haemoprotozoan parasite, causes surra in a wide range of domestic and wild animals. In the present study, a diagnostic PCR assay was developed using primers targeting invariable surface glycoprotein (ISG) gene of T. evansi, which amplified a 196 bp product. The DNA was extracted from purified trypanosomes and T. evansi infected mice blood, and serially diluted ranging from 20 ng/µl to 0.002 pg/µl and from 90 ng/µl to 0.009 pg/µl, respectively. The diagnostic sensitivity of the PCR assay was 0.02 ng/µl (2×101 parasites) and 0.09 ng/µl (1×102 parasites) with purified parasite DNA and infected mice blood DNA, respectively. The PCR assay was also performed on extracted genomic DNA from 86 blood samples from the field out of which 3 animals were found positive by ISG-PCR assay. The developed ISG gene based PCR assay could be employed for sensitive detection of early infection, sub-clinical status of trypanosomosis and drug efficacy studies in animals
Arginine starvation impairs mitochondrial respiratory function in ASS1-deficient breast cancer cells.
Autophagy is the principal catabolic response to nutrient starvation and is necessary to clear dysfunctional or damaged organelles, but excessive autophagy can be cytotoxic or cytostatic and contributes to cell death. Depending on the abundance of enzymes involved in molecule biosynthesis, cells can be dependent on uptake of exogenous nutrients to provide these molecules. Argininosuccinate synthetase 1 (ASS1) is a key enzyme in arginine biosynthesis, and its abundance is reduced in many solid tumors, making them sensitive to external arginine depletion. We demonstrated that prolonged arginine starvation by exposure to ADI-PEG20 (pegylated arginine deiminase) induced autophagy-dependent death of ASS1-deficient breast cancer cells, because these cells are arginine auxotrophs (dependent on uptake of extracellular arginine). Indeed, these breast cancer cells died in culture when exposed to ADI-PEG20 or cultured in the absence of arginine. Arginine starvation induced mitochondrial oxidative stress, which impaired mitochondrial bioenergetics and integrity. Furthermore, arginine starvation killed breast cancer cells in vivo and in vitro only if they were autophagy-competent. Thus, a key mechanism underlying the lethality induced by prolonged arginine starvation was the cytotoxic autophagy that occurred in response to mitochondrial damage. Last, ASS1 was either low in abundance or absent in more than 60% of 149 random breast cancer biosamples, suggesting that patients with such tumors could be candidates for arginine starvation therapy
Development of understanding in hydro-climate services in India to inform food and water security
This project aims to improve understanding of hydro-climate services in India in order to inform food and water security. It involves collaboration between UCL and the Centre for Ecology and Hydrology (CEH) in the UK and the National Institute of Hydrology (NIH), Roorkee and Indian Institute of Technology (IIT), Bombay in India. This report is structured around the three main themes of the project: catchment hydrological modelling, assessment of environmental flows under climate change, and a feasibility study to assess the potential of developing guidance for India similar to that of the Flood Estimation Handbook for the UK
Activation of the sodium pump blocks the growth hormone-induced increase in cytosolic free calcium in rat adipocytes
GH promptly increases cytosolic free calcium ([Ca2+]i) in freshly isolated rat adipocytes. Adipocytes deprived of GH for 3 h or longer are incapable of increasing [Ca2+]i in response to GH, but instead respond in an insulin-like manner. Insulin blocks the GH-induced increase in [Ca2+]i in GH-replete cells and stimulates the sodium pump (i.e. Na+/K+-ATPase), thereby hyperpolarizing the cell membrane. Blockade of the Na+/K+-ATPase with 100 microM ouabain reversed these effects of insulin and enabled GH to increase [Ca2+]i in GH-deprived adipocytes. Both insulin and GH activated the sodium pump in GH-deprived adipocytes, as indicated by increased uptake of 86Rb+. Decreasing availability of intracellular Na+ by blockade of Na+/K+/ 2Cl- symporters or Na+/H+ antiporters abolished the effects of both hormones on 86Rb+ uptake and enabled both GH and insulin to increase [Ca2+]i in GH-deprived adipocytes. The data suggest that hormonal stimulation of Na+/K+-ATPase activity interferes with activation of voltage-sensitive calcium channels by either membrane hyperpolarization or some unknown interaction between the sodium pump and calcium channels
Formulation and evaluation of controlled-release of telmisartan microspheres: In vitro/in vivo study
The aim of this work was to design a controlled-release drug-delivery system for the angiotensin-II receptor antagonist drug telmisartan. Telmisartan was encapsulated with different EUDRAGIT polymers by an emulsion solvent evaporation technique and the physicochemical properties of the formulations were characterized. Using a solvent evaporation method, white spherical microspheres with particle sizes of 629.9–792.1 μm were produced. The in vitro drug release was studied in three different pH media (pH 1.2 for 2 hours, pH 6.8 for 4 hours, and pH 7.4 for 18 hours). The formulations were then evaluated for their pharmacokinetic parameters. The entrapment efficiency of these microspheres was between 58.6% and 90.56%. The obtained microspheres showed good flow properties, which were evaluated in terms of angle of repose (15.29–26.32), bulk and tapped densities (0.37–0.53 and 0.43–0.64, respectively), Carr indices and Hausner ratio (12.94–19.14% and 1.14–1.23, respectively). No drug release was observed in the simulated gastric medium up to 2 hours; however, a change in pH from 1.2 to 6.8 increased the drug release. At pH 7.4, formulations with EUDRAGIT RS 100 showed a steady drug release. The microsphere formulation TMRS-3 (i.e., microspheres containing 2-mg telmisartan) gave the highest Cmax value (6.8641 μg/mL) at 6 hours, which was three times higher than Cmax for telmisartan oral suspension (TOS). Correspondingly, the area under the curve for TMRS-3 was 8.5 times higher than TOS. Particle size and drug release depended on the nature and content of polymer used. The drug release mechanism of the TMRS-3 formulation can be explained using the Higuchi model. The controlled release of drug from TMRS-3 also provides for higher plasma drug content and improved bioavailability