136 research outputs found

    Vertical stratification of the air microbiome in the lower troposphere

    Get PDF
    The troposphere constitutes the final frontier of global ecosystem research due to technical challenges arising from its size, low biomass, and gaseous state. Using a vertical testing array comprising a meteorological tower and a research aircraft, we conducted synchronized measurements of meteorological parameters and airborne biomass (n = 480) in the vertical air column up to 3,500 m. The taxonomic analysis of metagenomic data revealed differing patterns of airborne microbial community composition with respect to time of day and height above ground. The temporal and spatial resolution of our study demonstrated that the diel cycle of airborne microorganisms is a ground-based phenomenon that is entirely absent at heights >1,000 m. In an integrated analysis combining meteorological and biological data, we demonstrate that atmospheric turbulence, identified by potential temperature and high-frequency three-component wind measurements, is the key driver of bioaerosol dynamics in the lower troposphere. Multivariate regression analysis shows that at least 50% of identified airborne microbial taxa (n = ∼10,000) are associated with either ground or height, allowing for an understanding of dispersal patterns of microbial taxa in the vertical air column. Due to the interconnectedness of atmospheric turbulence and temperature, the dynamics of microbial dispersal are likely to be impacted by rising global temperatures, thereby also affecting ecosystems on the planetary surface

    Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes

    Get PDF
    Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases

    Superconductivity mediated by charge fluctuations in layered molecular crystals

    Get PDF
    We consider the competition between superconducting, charge ordered, and metallic phases in layered molecular crystals with the theta and beta" structures. Applying slave-boson theory to the relevant extended Hubbard model, we show that the superconductivity is mediated by charge fluctuations and the Cooper pairs have d(xy) symmetry. This is in contrast to the kappa-(BEDT-TTF)(2)X family, for which theoretical calculations give superconductivity mediated by spin fluctuations and with d(x)2(-y)2 symmetry. We predict several materials that should become superconducting under pressure

    Increased TIMP-3 expression alters the cellular secretome through dual inhibition of the metalloprotease ADAM10 and ligand-binding of the LRP-1 receptor

    Get PDF
    The tissue inhibitor of metalloproteinases-3 (TIMP-3) is a major regulator of extracellular matrix turnover and protein shedding by inhibiting different classes of metalloproteinases, including disintegrin metalloproteinases (ADAMs). Tissue bioavailability of TIMP-3 is regulated by the endocytic receptor low-density-lipoprotein receptor-related protein-1 (LRP-1). TIMP-3 plays protective roles in disease. Thus, different approaches have been developed aiming to increase TIMP-3 bioavailability, yet overall effects of increased TIMP-3 in vivo have not been investigated. Herein, by using unbiased mass-spectrometry we demonstrate that TIMP-3-overexpression in HEK293 cells has a dual effect on shedding of transmembrane proteins and turnover of soluble proteins. Several membrane proteins showing reduced shedding are known as ADAM10 substrates, suggesting that exogenous TIMP-3 preferentially inhibits ADAM10 in HEK293 cells. Additionally identified shed membrane proteins may be novel ADAM10 substrate candidates. TIMP-3-overexpression also increased extracellular levels of several soluble proteins, including TIMP-1, MIF and SPARC. Levels of these proteins similarly increased upon LRP-1 inactivation, suggesting that TIMP-3 increases soluble protein levels by competing for their binding to LRP-1 and their subsequent internalization. In conclusion, our study reveals that increased levels of TIMP-3 induce substantial modifications in the cellular secretome and that TIMP-3-based therapies may potentially provoke undesired, dysregulated functions of ADAM10 and LRP-1

    Association of Gender with Clinical Expression, Quality of Life, Disability, and Depression and Anxiety in Patients with Systemic Sclerosis

    Get PDF
    OBJECTIVES: To assess the association of gender with clinical expression, health-related quality of life (HRQoL), disability, and self-reported symptoms of depression and anxiety in patients with systemic sclerosis (SSc). METHODS: SSc patients fulfilling the American College of Rheumatology and/or the Leroy and Medsger criteria were assessed for clinical symptoms, disability, HRQoL, self-reported symptoms of depression and anxiety by specific measurement scales. RESULTS: Overall, 381 SSc patients (62 males) were included. Mean age and disease duration at the time of evaluation were 55.9 (13.3) and 9.5 (7.8) years, respectively. One-hundred-and-forty-nine (40.4%) patients had diffuse cutaneous SSc (dcSSc). On bivariate analysis, differences were observed between males and females for clinical symptoms and self-reported symptoms of depression and anxiety, however without reaching statistical significance. Indeed, a trend was found for higher body mass index (BMI) (25.0 [4.1] vs 23.0 [4.5], p = 0.013), more frequent dcSSc, echocardiography systolic pulmonary artery pressure >35 mmHg and interstitial lung disease in males than females (54.8% vs 37.2%, p = 0.010; 24.2% vs 10.5%, p = 0.003; and 54.8% vs 41.2%, p = 0.048, respectively), whereas calcinosis and self-reported anxiety symptoms tended to be more frequent in females than males (36.0% vs 21.4%, p = 0.036, and 62.3% vs 43.5%, p = 0.006, respectively). On multivariate analysis, BMI, echocardiography PAP>35 mmHg, and anxiety were the variables most closely associated with gender. CONCLUSIONS: In SSc patients, male gender tends to be associated with diffuse disease and female gender with calcinosis and self-reported symptoms of anxiety. Disease-associated disability and HRQoL were similar in both groups

    Association of circulating angiotensin converting enzyme activity with respiratory muscle function in infants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiotensin converting enzyme (ACE) gene contains a polymorphism, consisting of either the presence (I) or absence (D) of a 287 base pair fragment. Deletion (D) is associated with increased circulating ACE (cACE) activity. It has been suggested that the D-allele of ACE genotype is associated with power-oriented performance and that cACE activity is correlated with muscle strength. Respiratory muscle function may be similarly influenced. Respiratory muscle strength in infants can be assessed specifically by measurement of the maximum inspiratory pressure during crying (Pi<sub>max</sub>). Pressure-time index of the respiratory muscles (PTImus) is a non-invasive method, which assesses the load to capacity ratio of the respiratory muscles.</p> <p>The objective of this study was to determine whether increased cACE activity in infants could be related to greater respiratory muscle strength and to investigate the potential association of cACE with PTImus measurements as well as the association of ACE genotypes with cACE activity and respiratory muscle strength in this population.</p> <p>Methods</p> <p>Serum ACE activity was assayed by using a UV-kinetic method. ACE genotyping was performed by polymerase chain reaction amplification, using DNA from peripheral blood. PTImus was calculated as (Pi<sub>mean</sub>/Pi<sub>max</sub>) × (Ti/Ttot), where Pi<sub>mean </sub>was the mean inspiratory pressure estimated from airway pressure, generated 100 milliseconds after an occlusion (P<sub>0.1</sub>), Pi<sub>max </sub>was the maximum inspiratory pressure and Ti/Ttot was the ratio of the inspiratory time to the total respiratory cycle time. Pi<sub>max </sub>was the largest pressure generated during brief airway occlusions performed at the end of a spontaneous crying effort.</p> <p>Results</p> <p>A hundred and ten infants were studied. Infants with D/D genotype had significantly higher serum ACE activity than infants with I/I or I/D genotypes. cACE activity was significantly related to Pi<sub>max </sub>and inversely related to PTImus. No association between ACE genotypes and Pdi<sub>max </sub>measurements was found.</p> <p>Conclusions</p> <p>These results suggest that a relation in cACE activity and respiratory muscle function may exist in infants. In addition, an association between ACE genotypes and cACE activity, but not respiratory muscle strength, was demonstrated.</p

    LRP-1 Promotes Cancer Cell Invasion by Supporting ERK and Inhibiting JNK Signaling Pathways

    Get PDF
    Background: The low-density lipoprotein receptor-related protein-1 (LRP-1) is an endocytic receptor mediating the clearance of various extracellular molecules involved in the dissemination of cancer cells. LRP-1 thus appeared as an attractive receptor for targeting the invasive behavior of malignant cells. However, recent results suggest that LRP-1 may facilitate the development and growth of cancer metastases in vivo, but the precise contribution of the receptor during cancer progression remains to be elucidated. The lack of mechanistic insights into the intracellular signaling networks downstream of LRP-1 has prevented the understanding of its contribution towards cancer. Methodology/Principal Findings: Through a short-hairpin RNA-mediated silencing approach, we identified LRP-1 as a main regulator of ERK and JNK signaling in a tumor cell context. Co-immunoprecipitation experiments revealed that LRP-1 constitutes an intracellular docking site for MAPK containing complexes. By using pharmacological agents, constitutively active and dominant-negative kinases, we demonstrated that LRP-1 maintains malignant cells in an adhesive state that is favorable for invasion by activating ERK and inhibiting JNK. We further demonstrated that the LRP-1-dependent regulation of MAPK signaling organizes the cytoskeletal architecture and mediates adhesive complex turnover in cancer cells. Moreover, we found that LRP-1 is tethered to the actin network and to focal adhesion sites and controls ERK and JNK targeting to talin-rich structures. Conclusions: We identified ERK and JNK as the main molecular relays by which LRP-1 regulates focal adhesion disassembly of malignant cells to support invasion

    Decellularized Matrix from Tumorigenic Human Mesenchymal Stem Cells Promotes Neovascularization with Galectin-1 Dependent Endothelial Interaction

    Get PDF
    BACKGROUND: Acquisition of a blood supply is fundamental for extensive tumor growth. We recently described vascular heterogeneity in tumours derived from cell clones of a human mesenchymal stem cell (hMSC) strain (hMSC-TERT20) immortalized by retroviral vector mediated human telomerase (hTERT) gene expression. Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+) and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative qRT-PCR analysis revealed similar mRNA levels for genes encoding the angiogenic cytokines VEGF and Angiopoietin-1 in both clones. However, clone-BD11 produced a denser extracellular matrix that supported stable ex vivo capillary morphogenesis of human endothelial cells and promoted in vivo neovascularization. Proteomic characterization of the -BD11 decellularized matrix identified 50 extracellular angiogenic proteins, including galectin-1. siRNA knock down of galectin-1 expression abrogated the ex vivo interaction between decellularized -BD11 matrix and endothelial cells. More stable shRNA knock down of galectin-1 expression did not prevent -BD11 tumorigenesis, but greatly reduced endothelial migration into -BD11 cell xenografts. CONCLUSIONS: Decellularized hMSC matrix had significant angiogenic potential with at least 50 angiogenic cell surface and extracellular proteins, implicated in attracting endothelial cells, their adhesion and activation to form tubular structures. hMSC -BD11 surface galectin-1 expression was required to bring about matrix-endothelial interactions and for xenografted hMSC -BD11 cells to optimally recruit host vasculature

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF
    • …
    corecore