30 research outputs found

    Ordered phase and scaling in ZnZ_n models and the three-state antiferromagnetic Potts model in three dimensions

    Full text link
    Based on a Renormalization-Group picture of ZnZ_n symmetric models in three dimensions, we derive a scaling law for the ZnZ_n order parameter in the ordered phase. An existing Monte Carlo calculation on the three-state antiferromagnetic Potts model, which has the effective Z6Z_6 symmetry, is shown to be consistent with the proposed scaling law. It strongly supports the Renormalization-Group picture that there is a single massive ordered phase, although an apparently rotationally symmetric region in the intermediate temperature was observed numerically.Comment: 5 pages in REVTEX, 2 PostScript figure

    Aging in a topological spin glass

    Full text link
    We have examined the nonconventional spin glass phase of the 2-dimensional kagome antiferromagnet (H_3 O) Fe_3 (SO_4)_2 (OH)_6 by means of ac and dc magnetic measurements. The frequency dependence of the ac susceptibility peak is characteristic of a critical slowing down at Tg ~ 18K. At fixed temperature below Tg, aging effects are found which obey the same scaling law as in spin glasses or polymers. However, in clear contrast with conventional spin glasses, aging is remarkably insensitive to temperature changes. This particular type of dynamics is discussed in relation with theoretical predictions for highly frustrated non-disordered systems.Comment: 4 pages, 4 figure

    Orthorhombic versus monoclinic symmetry of the charge-ordered state of NaV2O5

    Full text link
    High-resolution X-ray diffraction data show that the low-temperature superstructure of alpha-NaV2O5 has an F-centered orthorhombic 2a x 2b x 4c superlattice. A structure model is proposed, that is characterized by layers with zigzag charge order on all ladders and stacking disorder, such that the averaged structure has space group Fmm2. This model is in accordance with both X-ray scattering and NMR data. Variations in the stacking order and disorder offer an explanation for the recently observed devils staircase of the superlattice period along c.Comment: REVTEX, 4 pages including 2 figures, shortened, submitted to PR

    Monte Carlo simulation of subsurface ordering kinetics in an fcc-alloy model

    Full text link
    Within the atom-vacancy exchange mechanism in a nearest-neighbor interaction model we investigate the kinetics of surface-induced ordering processes close to the (001) surface of an fcc A_3B-alloy. After a sudden quench into the ordered phase with a final temperature above the ordering spinodal, T_f > T_sp, the early time kinetics is dominated by a segregation front which propagates into the bulk with nearly constant velocity. Below the spinodal, T_f < T_sp, motion of the segregation wave reflects a coarsening process which appears to be slower than predicted by the Lifschitz-Allen-Cahn law. In addition, in the front-penetrated region lateral growth differs distinctly from perpendicular growth, as a result of the special structure of antiphase boundaries near the surface. Our results are compared with recent experiments on the subsurface ordering kinetics at Cu_3Au (001).Comment: 10 pages, 9 figures, submitted to Phys. Rev. B, in prin
    corecore