32 research outputs found

    A Comparative Structural Bioinformatics Analysis of the Insulin Receptor Family Ectodomain Based on Phylogenetic Information

    Get PDF
    The insulin receptor (IR), the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor-related receptor (IRR) are covalently-linked homodimers made up of several structural domains. The molecular mechanism of ligand binding to the ectodomain of these receptors and the resulting activation of their tyrosine kinase domain is still not well understood. We have carried out an amino acid residue conservation analysis in order to reconstruct the phylogeny of the IR Family. We have confirmed the location of ligand binding site 1 of the IGF1R and IR. Importantly, we have also predicted the likely location of the insulin binding site 2 on the surface of the fibronectin type III domains of the IR. An evolutionary conserved surface on the second leucine-rich domain that may interact with the ligand could not be detected. We suggest a possible mechanical trigger of the activation of the IR that involves a slight ‘twist’ rotation of the last two fibronectin type III domains in order to face the likely location of insulin. Finally, a strong selective pressure was found amongst the IRR orthologous sequences, suggesting that this orphan receptor has a yet unknown physiological role which may be conserved from amphibians to mammals

    Short stature associated with a novel heterozygous mutation in the insulin-like growth factor 1 gene.

    Get PDF
    Item does not contain fulltextCONTEXT: Homozygous IGF1 deletions or mutations lead to severe short stature, deafness, microcephaly, and mental retardation. Heterozygosity for an IGF-I defect may modestly decrease height and head circumference. OBJECTIVE: The objective of the study was to investigate the clinical features of heterozygous carriers of a novel mutation in the IGF1 gene in comparison with noncarriers in a short family and to establish the effect of human GH treatment. SUBJECTS: Two children, their mother, and their maternal grandfather carried the mutation and were compared with two relatives who were noncarriers. RESULTS: The two index cases had severe short stature (height sd score -4.1 and -4.6), microcephaly, and low IGF-I levels. Sequencing of IGF1 revealed a heterozygous duplication of four nucleotides, resulting in a frame shift and a premature termination codon. The mother and maternal grandfather had the same IGF1 mutation. Adult height (corrected for shrinking and secular trend) and head circumference sd score of carriers of the paternally transmitted mutation was -2.5 and -1.8, in comparison with -1.6 and 0.3 in noncarriers, respectively. After 2 yr of GH treatment, both index cases exhibited increased growth. CONCLUSIONS: Heterozygosity for this novel IGF1 mutation in children born from a mother with the same mutation, presumably in combination with other genetic factors for short stature, leads to severe short stature, which can be successfully treated with GH.1 november 201

    The severe short stature in two siblings with a heterozygous IGF1 mutation is not caused by a dominant negative effect of the putative truncated protein

    Get PDF
    Item does not contain fulltextOBJECTIVE: While in previous studies heterozygosity for an Insulin-Like Growth Factor 1 (IGF1) defect only modestly decreased height and head circumference, we recently reported on two siblings with severe short stature with a maternally transmitted heterozygous duplication of 4 nucleotides, resulting in a frame shift and a premature termination codon in the IGF1 gene. In this paper we describe the structural and functional characteristics of the putative truncated IGF-I protein. DESIGN: Two children, their mother and maternal grandfather carried the mutation. In addition, two family members who were not affected were included in the study. Mutant (MT) IGF-I was synthesized in oxidized and reduced form using two methods. Neutral gel filtration studies were carried out with wild-type (WT) and synthetic MT IGF-I. Binding analysis of synthetic MT IGF-I to the IGF1R and insulin receptors were performed with EBNA-293 cells, stably transfected with the IGF-I receptor, and IM9 cells. L6 cells were used to examine the mitogenic potency and the potential antagonizing effect of synthetic MT IGF-I by [(3)H]-thymidine incorporation assays. RESULTS: In the sera of both the carriers and non-carriers the proportion of (125)I-IGF-I that was associated with the 150 kDa complex was somewhat less (varying between ~37 and ~52%) than in normal pooled serum (~53-~63%) and, instead, slightly increased amounts of radioactivity were eluted in the 40-50 kDa fraction (consisting of binary IGF-IGFBP complexes) or remained unbound. Synthetic MT IGF-I did not bind to the IGF-I receptor, nor antagonize the growth-promoting effect of IGF-I. It did bind to IGFBPs, but was barely incorporated into 150 kDa complexes. Because in all cases WT IGF-I immunoreactivity was recovered in one peak, corresponding to the MW of WT IGF-I, i.e. ~7.6 kDa, an interaction of circulating truncated mutant peptide with WT IGF-I is very unlikely. CONCLUSIONS: There is no evidence that the severe short stature associated with heterozygosity for this novel IGF1 mutation in children born from a mother with the same mutation is caused by a dominant negative effect of the truncated protein. We speculate that the growth failure is caused by a combination of partial IGF-I deficiency, placental IGF-I insufficiency, and other genetic factors
    corecore