4 research outputs found
Fibroblast growth factor receptor 4: a putative key driver for the aggressive phenotype of hepatocellular carcinoma
Recently, we found upregulation of fibroblast growth factor receptor 4 (FGFR4) in a subset of hepatocellular carcinoma (HCC). Here, we provide mechanistic insight into the role of FGFR4-mediated signalling for the aggressive behaviour of HCC cells. To overexpress FGFR4, hepatoma/hepatocarcinoma cells were transfected with a construct coding for FGFR4. For downmodulation of endogenous FGFR4, we used small interfering RNA or adenoviral infection with dominant-negative FGFR4 constructs being either kinase dead (kdFGFR4) or coding for the autoinhibitory soluble domain (solFGFR4). FGFR4 overexpression in non-tumourigenic hepatocarcinoma cells significantly reduced cell-matrix adhesion, enabled cells to grow anchorage-independently in soft agar, to disintegrate the lymph-/blood-endothelial barrier for intra-/extravasation of tumour cells and to form tumours in SCID mice. Transcriptome analysis revealed altered expression of genes involved in cell-matrix interactions. Conversely, in highly tumourigenic cell lines, kdFGFR4 or solFGFR4 lowered the proportion of cells in S phase of the cell cycle, enhanced the G0/G1 and G2/M-phase proportions, reduced anchorage-independent growth in vitro and attenuated disintegration of the lymph-/blood-endothelium and tumour formation in vivo. These findings were confirmed by altered expression profiles of genes being important for late stages of cell division. Deregulated FGFR4 expression appears to be one of the key drivers of the malignant phenotype of HCC cells. Accordingly, blockade of FGFR4-mediated signalling by soluble dominant-negative constructs, like solFGFR4, may be a feasible and promising therapeutic approach to antagonize aggressive behaviour of hepatoma/hepatocarcinoma cells. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: [email protected]
Differential effects of polymorphic alleles of FGF receptor 4 on colon cancer growth and metastasis
A gly(388)arg polymorphism (rs351855) in the transmembrane domain of the fibroblast growth factor receptor (FGFR4) is associated with increased risk, staging, and metastasis in several different types of cancer. To specifically assess the impact of the polymorphic FGFR4 in colorectal cancer (CRC), we engineered CRC cell lines with distinct endogenous expression patterns to overexpress either the FGFR4(gly) or FGFR4(arg) alleles. The biologic analyses revealed an oncogenic importance for both polymorphic alleles, but FGFR4(gly) was the stronger inducer of tumor growth, whereas FGFR4(arg) was the stronger inducer of migration. An evaluation of clinical specimens revealed that FGFR4 was upregulated in 20/71 patients independent of gly(388)arg status. There was no correlation between the presence of an FGFR4(arg) allele and CRC or polyp risk in 3,471 participants of the CORSA study. However, among 182 patients with CRC, FGFR4(arg)-carriers had a fivefold higher risk of tumors that were stage II or greater. Together, our results established that both allelic forms of FGFR4 exert an oncogenic impact and may serve equally well as therapeutic targets in CRC. One important implication of our findings is that FGFR4(arg)-carriers are at a higher risk for more aggressive tumors and therefore may profit from early detection measures