532 research outputs found

    When do weak-coupling approaches accurately capture the dynamics of complex quantum systems?

    Full text link
    Understanding the dynamics of higher-dimensional quantum systems embedded in a complex environment remains a significant theoretical challenge. While several approaches yielding numerically converged solutions exist, these are computationally expensive and often provide only limited physical insight. Here we address the question when more intuitive and simpler to compute weak-coupling approaches still provide adequate accuracy. We develop a simple analytical criterion and verify its validity for the case of the much-studied FMO dynamics as well as the canonical spin-boson model.Comment: 10 pages, 5 figures, comments are very welcome

    Coarse-graining in retrodictive quantum state tomography

    Full text link
    Quantum state tomography often operates in the highly idealised scenario of assuming perfect measurements. The errors implied by such an approach are entwined with other imperfections relating to the information processing protocol or application of interest. We consider the problem of retrodicting the quantum state of a system, existing prior to the application of random but known phase errors, allowing those errors to be separated and removed. The continuously random nature of the errors implies that there is only one click per measurement outcome -- a feature having a drastically adverse effect on data-processing times. We provide a thorough analysis of coarse-graining under various reconstruction algorithms, finding dramatic increases in speed for only modest sacrifices in fidelity

    Creating nuclear spin entanglement using an optical degree of freedom

    Get PDF
    Funding: Marie Curie Early Stage Training network QIPEST (Grant No. MESTCT-2005-020505), the EPSRC through QIP IRC (Grant Nos. GR/S82176/01 and GR/S15808/01), the National Research Foundation and Ministry of Education, Singapore, the DAAD (German Academic Exchange Service), Linacre College, Oxford, and the Royal Society.Molecular nanostructures are promising building blocks for future quantum technologies, provided methods of harnessing their multiple degrees of freedom can be identified and implemented. Due to low decoherence rates, nuclear spins are considered ideal candidates for storing quantum information, while optical excitations can give rise to fast and controllable interactions for information processing. A recent paper [M. Schaffry et al., Phys. Rev. Lett. 104, 200501 (2010)] proposed a method for entangling two nuclear spins through their mutual coupling to a transient optically excited electron spin. Building on the same idea, we present here an extended and much more detailed theoretical framework, showing that this method is in fact applicable to a much wider class of molecular structures than previously discussed in the original proposal.Publisher PDFPeer reviewe

    Classical noise assists the flow of quantum energy by `momentum rejuvenation'

    Get PDF
    An important challenge in quantum science is to fully understand the efficiency of energy flow in networks. Here we present a simple and intuitive explanation for the intriguing observation that optimally efficient networks are not purely quantum, but are assisted by some interaction with a `noisy' classical environment. By considering the system's dynamics in both the site-basis and the momentum-basis, we show that the effect of classical noise is to sustain a broad momentum distribution, countering the depletion of high mobility terms which occurs as energy exits from the network. This picture predicts that the optimal level of classical noise is reciprocally related to the linear dimension of the lattice; our numerical simulations verify this prediction to high accuracy for regular 1D and 2D networks over a range of sizes up to thousands of sites. This insight leads to the discovery that dramatic further improvements in performance occur when a driving field targets noise at the low mobility components

    Quantum process tomography via completely positive and trace-preserving projection

    Get PDF
    We present an algorithm for projecting superoperators onto the set of completely positive, trace-preserving maps. When combined with gradient descent of a cost function, the procedure results in an algorithm for quantum process tomography: finding the quantum process that best fits a set of sufficient observations. We compare the performance of our algorithm to the diluted iterative algorithm as well as second-order solvers interfaced with the popular CVX package for MATLAB, and find it to be significantly faster and more accurate while guaranteeing a physical estimate.Comment: 13pp, 8 fig

    Quantum thermometry using the ac Stark shift within the Rabi model

    Get PDF
    This work was supported by the EPSRC, the National Research Foundation and Ministry of Education, Singapore, and the Royal Society.A quantum two-level system coupled to a harmonic oscillator represents a ubiquitous physical system. New experiments in circuit QED and nanoelectromechanical systems (NEMS) achieve unprecedented coupling strength at large detuning between qubit and oscillator, thus requiring a theoretical treatment beyond the Jaynes-Cummings model. Here we present a new method for describing the qubit dynamics in this regime, based on an oscillator correlation function expansion of a non-Markovian master equation in the polaron frame. Our technique yields a new numerical method as well as a succinct approximate expression for the qubit dynamics. These expressions are valid in the experimentally interesting regime of strong coupling at low temperature. We obtain a new expression for the ac Stark shift and show that this enables practical and precise qubit thermometry of an oscillator.Peer reviewe

    High fidelity all-optical control of quantum dot spins: detailed study of the adiabatic approach

    Get PDF
    Confined electron spins are preferred candidates for embodying quantum information in the solid state. A popular idea is the use of optical excitation to achieve the ``best of both worlds'', i.e. marrying the long spin decoherence times with rapid gating. Here we study an all-optical adiabatic approach to generating single qubit phase gates. We find that such a gate can be extremely robust against the combined effect of all principal sources of decoherence, with an achievable fidelity of 0.999 even at finite temperature. Crucially this performance can be obtained with only a small time cost: the adiabatic gate duration is within about an order of magnitude of a simple dynamic implementation. An experimental verification of these predictions is immediately feasible with only modest resources

    Quantum dynamics in a tiered non-Markovian environment

    Get PDF
    We introduce a new analytical method for studying the open quantum systems problem of a discrete system weakly coupled to an environment of harmonic oscillators. Our approach is based on a phase space representation of the density matrix for a system coupled to a two-tiered environment. The dynamics of the system and its immediate environment are resolved in a non-Markovian way, and the environmental modes of the inner environment can themselves be damped by a wider `universe'. Applying our approach to the canonical cases of the Rabi and spin-boson models we obtain new analytical expressions for an effective thermalisation temperature and corrections to the environmental response functions as direct consequences of considering such a tiered environment. A comparison with exact numerical simulations confirms that our approximate expressions are remarkably accurate, while their analytic nature offers the prospect of deeper understanding of the physics which they describe. A unique advantage of our method is that it permits the simultaneous inclusion of a continuous bath as well as discrete environmental modes, leading to wide and versatile applicability.Comment: Video abstract available at http://iopscience.iop.org/1367-2630/17/2/023063. 15 pages, 6 figure

    Practicality of spin chain 'wiring' in diamond quantum technologies

    Get PDF
    Coupled spin chains are promising candidates for 'wiring up' qubits in solid-state quantum computing (QC). In particular, two nitrogen-vacancy centers in diamond can be connected by a chain of implanted nitrogen impurities; when driven by a suitable global fields the chain can potentially enable quantum state transfer at room temperature. However, our detailed analysis of error effects suggests that foreseeable systems may fall far short of the fidelities required for QC. Fortunately the chain can function in the more modest role as a mediator of noisy entanglement, enabling QC provided that we use subsequent purification. For instance, a chain of 5 spins with inter-spin distances of 10 nm has finite entangling power as long as the T2 time of the spins exceeds 0.55 ms. Moreover we show that re-purposing the chain this way can remove the restriction to nearest-neighbor interactions, so eliminating the need for complicated dynamical decoupling sequences.Comment: 5 pages (plus 5-page supplement

    Frequency-encoded linear cluster states with coherent Raman photons

    Get PDF
    Entangled multi-qubit states are an essential resource for quantum information and computation. Solid-state emitters can mediate interactions between subsequently emitted photons via their spin, thus offering a route towards generating entangled multi-photon states. However, existing schemes typically rely on the incoherent emission of single photons and suffer from severe practical limitations, for self-assembled quantum dots most notably the limited spin coherence time due to Overhauser magnetic field fluctuations. We here propose an alternative approach of employing spin-flip Raman scattering events of self-assembled quantum dots in Voigt geometry. We argue that weakly driven hole spins constitute a promising platform for the practical generation of frequency-entangled photonic cluster states
    corecore