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Abstract
An important challenge in quantum science is to fully understand the efficiency of energyflow in
networks. Herewe present a simple and intuitive explanation for the intriguing observation that opti-
mally efficient networks are not purely quantum, but are assisted by some interactionwith a ‘noisy’
classical environment. By considering the systemʼs dynamics in both the site-basis and themomen-
tum-basis, we show that the effect of classical noise is to sustain a broadmomentumdistribution,
countering the depletion of highmobility termswhich occurs as energy exits from the network. This
picture suggests that the optimal level of classical noise is reciprocally related to the linear dimension
of the lattice; our numerical simulations verify this prediction to high accuracy for regular 1D and 2D
networks over a range of sizes up to thousands of sites. This insight leads to the discovery that dramatic
further improvements in performance occurwhen a driving field targets noise at the lowmobility
components. The simulation codewhichwewrote for this study has beenmade openly available at
figshare4.

The study of energy transfer in quantumnetworks is a broadfield, ranging from abstract theoretical studies [1–
11] through to experimentally observed transport dynamics of real networks [12, 13], for instance in light-
harvesting complexes [14–20]. An important observation is that while generally a purely quantummechanical
energy transfer process (i.e. a quantum randomwalk) is inherently faster than the classical equivalent,
nevertheless when onemeasures the efficiency of a network in terms of the time needed for a unit of energy to
completely traverse it, then it is often optimal to temper the purely quantumdynamics with a degree of classical
‘noise’. This noisemay be, for example, dephasing of the quantum state [21] or a spontaneous hopping process;
in each case the ideal level of noise is non-zero, and for the latter case this has recently been verified for networks
of arbitrary topology and sizes up to thousands of sites [22].

It is well established that the optimal level of noise varies dramatically according to the particular features of
the underlying system. For example, for an input and an exit site bridged by a topologically disordered network,
noise leads to classical diffusion, and this limit has been found to be generally optimal [23]. A similar geometrical
setupfinds that noise generally improves systemswith low efficiency and deteriorates those specific instances
which performparticularly well under quantumdiffusion [24, 25]. Further, it is well known that for
homogeneous linear chains where the excitation enters on one end and exits on the opposite end, any noise at all
is detrimental [22, 26–30]. Intriguingly, however, with the exception of some specific cases such as the preceding
one, noise generally remains advantageous.

In traditional Förster theory [31] dephasing noise assumes a beneficial role by inducing line-broading, which
improves the transfer rate between sites with energymismatch. At the same time, it renders the resulting
dynamics incoherent, and hence suboptimal. By contrast, the early work ofHaken, Strobl andReineker [32–34]
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considers both classical and quantumdiffusion as contributing to transport, and in some limits even captures
the fact that a certain amount of noise can be advantageous [27, 35].However, it does not provide a deeper
insight into this intriguing observation and the subtle effects giving rise to it.

Therefore, various explanations for classically-assisted quantum transport have recently been proposed
[26, 27, 35–45] (see [46] for a review of earlier works on quantum transport phenomena). For example, [27]
addresses both line-broadening and the suppression of destructive interference as basicmechanisms underlying
this phenomenon. Very recently, [47] introduced several furthermechanisms occurring in simple energy-
transfermodels with few sites, whichmay also persist in larger networks, whereas [48] provides a simpleway of
understandingwhy there exists an optimal amount of excitonwavefunction delocalisation in photosynthetic
networks in terms of a ‘quantumGoldilocks principle’. Generally, in networks with disorder (e.g. irregularities
in the site couplings) the quantum state can become locally trapped [3]. Injecting classical noise can break this
localisation, as has for instance been recently experimentally observed in ultra-cold atomic systems on optical
lattices [49]. Similar to classical noise, even a veryweak localmeasurement can suppress Anderson localization,
hence enhancing quantum transport [50]. Classical noise has been found to be advantageous even in perfectly
ordered networks. For such systems it is generally argued that quantumnetworks suffer from a kind of locking
effect, where destructive interference occurs between the different possible pathways to the exit site.

Following the notion of invariant subspaces introduced in [27], an equivalent statement of this effect is that
some of the spatial eigenstates of the system (which are in general highly non-local)may have zero amplitude on
a given site—if such a site happened to be the exit, then any part of the initial wavefunction associatedwith such
an eigenstate would never be able to leave the network. Classical noise disrupts such eigenstates, thus alleviating
the problem. This concept has recently also been labelled the ‘orthogonal subspace’ to the trapping
superoperator and used to derive an asymptotic scaling theory for energy transport [51]. In this paperwewill say
that a system exhibits ‘quantum locking’ if there is afinite probability of energy remaining on the network as

→ ∞t (for zero noise). Strict quantum locking occurs in certain network topologies, however, amuch larger
class of networks exhibits an ‘approximate’ variant of it, where the amplitude of certain eigenstates on the exit
site is small (as opposed to identically zero), i.e. there is a degree of destructive interference present, however,
without effecting a complete cancellation of thewavefunction on the exit site. Aswe have defined it above,
quantum locking is perhaps themost intuitive way inwhich destructive interferencemay inhibit transfer to the
exit site. However, note that interference-related effects can also have other consequences affecting transport,
and themechanismwe discuss in this paper could alternatively be seen as an instance in this category.

It is well-established that quantum locking, despite its importance and conceptual elegance, does not
provide a comprehensive explanation for noise-assisted quantum transport even in highly ordered networks:
there are a number of basic cases where classical noise does assist quantum transport, and yet provably there is
no quantum locking effect present. The simplest example (figure 1(a)) is the one-dimensional (1D) chainwith
an exit site at one end and an initial excitation site within the chain [22, 30]. Indeed, a deformed linear chain
constitutes an examplewithout even approximate quantum locking, and yet classical noise remains beneficial
(see appendix A). Aswe presently discuss,many examples also exist in themore complicated landscape of two-

Figure 1. Some of the regular network topologies considered here: (a) linear (b) ring, and (c) rectangular lattices. Each circle
represents a site, i.e. amolecule or other entity which can be excited by a quantumof energy; the excitation can hop fromonemolecule
to the nearest neighbouringmolecule and leave the network via the exit site.
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dimensional (2D) networks. Therefore, while quantum locking (both strict and approximate) is certainly an
important effect, we should continue to seek an explanation for the phenomenonwhich also encompasses those
cases.

In this paper, wewill argue that classically-assisted quantum transport in regular networks can be intuitively
understood by viewing the dynamics through a combination of the site-basis and themomentum-basis pictures.
We begin by explaining the basic principle, before developing the ideamore formally and finally checking the
predictions versus intensive numerical simulations. Our analysis in this paper is restricted to the case where
there is a single quantumof energy in the network, althoughwe anticipate that our argument translates
straightforwardly tomultiple energy quanta, as long as the density of excitations is low and interactions between
excitations rarely happen. (Wenote in passing that in certain photosynthetic systems, the single excitation
model is certainly appropriate since fewer than 10 photons are absorbed permolecule per second [52], while the
coupling strength ofmolecules ∼1 meV, and thus the transport process is ∼1010 times faster than the
absorption process.)We identify the site basis with states written as ∣ 〉i s, which corresponds to the energy being
definitely located at site-i, andwewill assign the index x to the ‘exit’ site.Wewill presently define themomentum
basis as the standard canonical complement to the site basis.

To explain the process let usfirst consider a rather contrivedmodel for classical noise: wewill subject our
quantum system to a periodic series of instantaneous events where the state is completely dephased in the site
basis.We initialise our systemby injecting energy at some randomly chosen location, i.e. we select some random
initial state ∣ 〉i s, and there follows a period of evolution before the first dephasing event. State ∣ 〉i s will of course
correspond to a broad superposition of states in themomentumpicture. The components with a high group
velocity will rapidly transit the network andwill be the first to impinge on the exit site (to ‘hit’ that site in the
terminology of randomwalks). Therewill then be a finite probability per unit time of the energy exciting the
system; over time if the energy does not exit, thewavefunctionwill skew further and further toward lower group
velocity terms. Suppose that this has occurred for some period, and then the first of our classical noise events
occurs.

This dephasing event is equivalent tomeasuring the system in the site basis, and then forgetting the outcome.
In effect we are reinitialising the system to some state ∣ 〉j s (although of course this choice is not purely random,
since a given site j ismore likely if it is closer to the original site i). But regardless of which ∣ 〉j s we select, the
important point is that themomentumdistribution is nowonce again broad and includes elements with a high
group velocity. Thus our periodic classical noise process repeatedly reinvigorates, or rejuvenates, the
momentumdistribution and so counters the skew towards lowmobility elements. In-between noise events the
high group velocity components will reach the exit and be removed. Clearly there is some optimal rate of
classical noise: if it is too strong, i.e. the frequency of the events is too high, then after one event another will
occur before themore rapidly propagating components can exit—this wouldmerely reduce the quantum
randomwalk to a classical onewithout any advantage. Conversely, tooweak a level of classical noise willmean
thatwemiss the opportunity to rejuvenate themomentumdistribution.

This line of thought leads one to conclude that the optimal frequency of the classical noise should depend on
the lattice size. In a larger lattice, the highmomentum components have further to go to reach the exit, and so a
longer period should be allowed between the classical noise events. Onemight expect a N1 dependence, where
N is the linear dimension of the lattice (so that a square lattice hasN2 sites). In the following, this conjecture is
verified to a high degree of accuracy by our numerical simulations.

The transport of energy in a regular networkwith identical sites can bemodelled as ( = 1)

 ρ ρ ρ ρ∂
∂

= − + +
t

Hi[ , ] , (1)x

where the coherent transport is given by theHamiltonian

∑ σ σ= − − ++ −( )H p J(1 ) h. c. , (2)
i j

i j

,

where h.c. denotes theHermitian conjugate and the noisy classical process is either classical hopping (CH)

  ∑ρ ρ ρ= +( ), (3)
i j

i j j i

,

, ,

with

⎜ ⎟⎛
⎝

⎞
⎠ ρ λ σ σ ρσ σ σ σ σ σ ρ= −− + − + − + − + −{ }pJ

1

2
, , (4)i j i j j i j i i j,

1
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or pure dephasing (PD)

 ∑ρ σ ρσ ρ= −( )pJ
1

4
, (5)

i

i
z

i
z

and the excitation leaves the network via the exit site-x according to the process

⎜ ⎟⎛
⎝

⎞
⎠ ρ Γ σ ρσ σ σ ρ= −− + + −{ }1

2
, . (6)x x x x x

Here, ρ is the state of the network,σ = ∣ 〉〈 ∣+ e gi i andσ = ∣ 〉〈 ∣− g ei i are ladder operators describing transitions
between the ground state∣ 〉g and the excited state∣ 〉e of the site-i,〈 〉i j, denotes two connected sites, J is the
coupling strength, − p1 and p are the relative weightings of the quantumand classical processes ( ⩽ ⩽p0 1)
[22, 23, 53], the constant λ = 2, 4, 6 for 1D chain, 2D square, and three-dimensional (3D) cubic lattices,
respectively, andΓ is the strength of the exit coupling from the network.Note that we do not need to explicitly
include the reaction centres depicted infigure 1 in ourmodel.

Our single-excitation subspace is spanned by ∣ 〉i{ }s , where the state σ∣ 〉 = ∣ 〉+i gs i s and∣ 〉g s denotes the overall
ground state of the entire system.When p=0, the transport process is purely quantummechanical; when p=1,
the transport becomes a completely classical randomwalk in theCHmodel, andwill be switched off entirely in
the PDmodel. Here our analysis will be largely focused on theCHmodel, but we note that the same basic
argumentwill apply to PD.

In order tomeasure the transport efficiency, we look at the probability that at time t the energy quantumhas
failed to exit the network, ρ σ σ= ∑ =

+ −P t t( ) Tr [ ( ) ]i
N

i i1 . This is the ‘population’ remaining on the network. In
cases where there is no quantum locking all population eventually vanishes; one such system is the 1D chainwith
the exit at one end of the chain, as shown infigures 1(a) and 2(a).Moreover, it will always vanishwhenwe have
finite classical noise. Therefore we can gauge the transport efficiency, or rather the inefficiency, by finding the

average dwelling time in the networkwhichwe define as ∫=
∞

t t P t¯ d ( )
0

.We regard a network as optimised

when this quantity has beenminimised.

Figure 2. For a 1D chain ofN=40 sites with an ‘exit’ site at one end (see figure 1(a)), and a range of classical hopping rates p, we plot
(a) the probabilityP(t) that the energy quantum is still on the network, and (b) the average dwelling time t̄ . The energy is initially
located at a randomly chosen site, so that curves are computed using an initial ρ = ∑ ∣ 〉〈 ∣−

=N i i(0) i
N

s
1

1 .We set the exit coupling to be
Γ = J3 . In (a), the green line corresponds to the pure coherent transport case p=0, the red line corresponds to the pure CHcase p=1,
and black lines represents = …p 0.1, 0.2, , 0.9 frombottom to top, respectively. In (b), one canfind that the average dwelling time is
minimised at afinite CH rate ≃p 0.03.
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For the 1D chain, the average dwelling time for different CH rates p is shown infigure 2(b).We note that the
average dwelling time isminimized at ≃p 0.03 for the chainwith lattice sizeN=40whenwe take the exit to be
siteN.

In the single-excitation subspace of the 1D chain, themomentum eigenstate withwave vectork a is

∑=
+

k
N

ki i
2

1
sin ( ) , (7)m

i

N

s

where π= +k n N( 1), = …n N1, 2, , , and a is the lattice constant. The eigenenergy of the state∣ 〉k m is
= − −E p J k2(1 ) cosk , and the corresponding group velocity is∣ ∣ = ∣∂ ∂ ∣v a E kk kg, . Therefore, a wavefunction

formed from states in themiddle of the band has a high group velocity δ∣ ∣ ≃ − −π δ+v p Ja k2(1 ) (1 2)kg, 2
2 ,

while a superposition of states at the edge of the band has a low group velocity δ∣ ∣ ∣ ∣ ≃ −δ π δ−v v p Ja k, 2(1 )k kg, g, .
Suppose that at t=0our excitation is at site i, then inverting equation (7)we see that in themomentumbasis

the state has a probability of +kj N2 sin ( ) ( 1)2 associatedwith the eigenstate∣ 〉k m. Hence, the site-localised
excitationwill have significant population in both the high- and the low-velocity states. Aswe have discussed, the
higher-velocity components leave the systemfirst, leaving behind an evermore slowly falling population
remnant.

Suppose that afinite level of CH is present. Even though our noisemodels (equations (3) and (5)) are
continuous, we canmap this onto discrete events whereby the excitation is effectively reinitialized during the
transport process. For a short timeδt , the state evolves as

⎡⎣ ⎤⎦ ρ δ ρ+ ≃ δ δ δ δ−t t t( ) e e e ( )e . (8)t t H t H ti ie

In the single-excitation subspace, the effect of CH can be expressed as

 ∑ρ ρ ρ ρ≃ + +δ ( )E E E E E Ee , (9)t

i j

i j i j j i j i0 0
†

,

, ,
†

, ,
†

where

 ∑λ δ= − +− ( )E pJ t i i j j
1

2
, (10)

i j
s s0

1

,

λ δ= −E pJ t i j . (11)i j s,
1

Hence, a CH eventEi j, corresponds to ameasurement of the position of the excitation at site j followed by
moving the excitation to a randomly chosen neighbouringmolecule i, i.e. effectively reinitialising the excitation
to one of the neighbouring sites.

The presence of dephasing PDwill have essentially the same effect, of course without the final ‘hop’; it can be
expressed as

 ∑ρ ρ ρ≃ ′ + ′δ ′ ′E E E Ee , (12)t

i

i i0 0
† †

where

 ∑δ′ = −E pJ t i i
1

2
, (13)

i
s0

δ′ =E pJ t i i . (14)i s

Thus for both ourmodels of continuous classical noise, wemay equivalently think in terms of an occasional
reinitialisation process where part of the population in low-velocity states will be promoted to high-velocity
states. To optimize the transport efficiency, the high-velocity component has to leave the network before the
next CHor PD event happens. Therefore, the optimal level of classical noise p decreases with the time required to
leave the network, i.e. the lattice size. Notice that this implies that in the limit → ∞N , the optimal rate →p 0. In
otherwords, for very large ordered lattices we expect that the classical noisemechanismdescribed herewill no
longer be advantageous.

Infigure 3we showhow themomentumdistribution ρ= ∣ 〉〈 ∣P k kTr ( )k m evolves over time, starting froma
broad initial distribution corresponding to a site eigenstate∣ 〉i s. For the purely quantum limit p=0onefinds that
populations in high-velocity states, π∼k 2, vanishmuch faster than those in low-velocity states, so our initially
even distribution becomes highly skewed as time passes. For the pure CH case, populationswith different
momenta vanishwith almost the same rate, but this rate ismuch slower than the coherent transport (note the
units of the time axis are ten times greater). In the ‘best of bothworlds’ case amodest level of CH serves to

5

New J. Phys. 17 (2015) 013057 YLi et al



rejuvenate the distribution, i.e. to keep it relatively even. The high-velocity components can still escape from the
network quite efficiently, while at the same time the lingeringwings of the distribution are depleted as we
transfer population from low-velocity states to high-velocity states via CH events. As a result, although
population in high-velocity states persists for longer than it does in the purely quantum case, nevertheless the
overall transport efficiency is increased. This explanation remains valid in the presence ofmoderate levels of
disorder aswe show in appendix B.

The analysis so far has been presented in terms of the 1D lattice, but the same arguments equally apply to
higher dimensional regular lattices.We nowpresent the results of numerical simulationswhichwe have
performed on 1D, 2D and 3D arrays. In all cases we observe a N1 scaling of the optimal noise level, whereN is
the linear dimension of the array. This is fully consistent with the expectation that the phenomenon of
momentum rejuvenation applies to regular networks of any dimension.

To be specific, we should in fact anticipate that the quantity −p p(1 )will scale in this way, according to the
following reasoning: the effective rate at whichwe reinitialise themomentumdistribution goes with pJ, but the
rate at which the quantum coherent evolution occurs is proportional to − p J(1 ) , see equation (2). Thus the
widthwhich the excitationʼs spatial distribution can reach between reinitialisation events varies with − p p(1 ) ,
andwe expect that this width should be proportional to the linear lattice sizeN (and therefore the average
distance between a randomly chosen site and the exit site). Thuswe expect to see

−
=

+
p

p

b

N c1
,

where b is a constant of proportionality andwe have also added an adjustment c to allow forfinite size effects
(which should be significant only for small arrays).We do not predict the specific values of these constants,
whichwill depend for example on the location of the exit site (corner, edge or internal to the lattice).However,
we expect that the above expressionwill be accurately obeyed if b and c are treated as free fitting parameters. In
figure 4we display the results of a series of numerical experiments wherewe test our hypothesis.Wefind that the
proposed function does indeed fit the data well. Corresponding fitting parameters and confidence intervals are
shown in appendix C.

It is worth noting that one can obtain a reasonable estimate of the optimal rate of classical noisemerely by
applying our simple discretised picture: fully dephasing events occur intermittently, in place of the real
continuous noise.We suppose that the single-excitation state evolves coherently, i.e. p= 0, and is completely
reinitializedwith the period τ. A complete reinitialization reads

∑ρ
ρ→

=N
i i

Tr ( )
, (15)

i

N

s
1

whichmeans the excitation is initialized at a randomly chosen site. IfP(t) denotes the population in the network
at time twhen p=0 (i.e. the green curve infigure 2), the population after n occurrences of the reinitialization
eventwith period τ is τP ( )n. Therefore, roughly speaking, the population in the network decays with a rate
γ τ τ= − Pln ( )dis . For the chainwith the sizeN=40 shown infigure 2, we extract amaximumof the decay rate

γdis at τ ≃ −J42.5 1. Comparing the frequency of complete reinitializations with theCH rate, τ ∼ −− J p p(1 )1 ,
then this optimal period corresponds to theCH rate p=0.023, which is remarkably close to the observed optimal
CH rate p=0.029.

Figure 3.Colourmaps showing the populations associatedwithmomentum eigenstates Pk on the one-dimensional chain latticewith
N=40 sites (see figure 2) for (a) the pure coherent transport case p=0, (b) the optimal CH rate p=0.029, and (c) the pureCH case
p=1.Note that the time range (horizontal axis) is ten times greater for (c), and that therefore the pure classical hopping is very inferior
to the other two. Inset plots showpopulation distributions at the time = −t J200 1, with total probability stated.
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Howdoes the role of noise in overcoming quantum locking compare to its role in thismomentum
rejuvenation picture?We know that quantum locking is a significant effect inmany systems. For example in a
regular 2D square array therewill always befinite quantum locking in the absence of noise, and therefore the
assistance provided by noise is, in part, to remove this locking effect. However there are alsomany cases where
there is no quantum locking in the zero-noise limit. Our numerical simulations indicate that such cases include
the following (for any location of the initial state and exit, unless otherwise noted):

• A1D arraywith the exit at one end, and the initial excitation site within the chain.

• A2D array × +N N( 1)with >N 4 and the exit in a corner.

• Any 2D arraywith dimensions − × −N M( * 1) ( * 1), whereN* andM* are two different primes.

• Any 2D arraywithmultiple exit sites forming the perimeter (shown analytically in appendixD).

• Any 2D arraywith (arbitrarily small) randomperturbations to the coupling strengths or the on-site energies.

For all these cases wewould expect that themomentum rejuvenation picture still applies, since it has no
special reliance on symmetries in the system. And indeed in all these cases we find that there is afinite value of
classical noise which optimises the network. Thereforewe conjecture that themomentum rejuvenation picture
is a complementary explanation for noise-assisted transport in regular arrays; which not only captures the
important role of noise in disrupting quantum locking, but also applies to networks which do not feature
locking.

In support of this view, we note that figure 4(b) contains one instance of a networkwhere locking is present
(the square array) and one forwhich it is not (rectangular with exit on the corner). For small networkswe note
that the optimal amount of noise is higher for the square lattice compared to the rectangular one. In fact, this is

Figure 4.The optimal classical hopping (CH) rate popt of (a) one-dimensional chain lattices and ring lattices withN sites, (b) two-

dimensional square lattices, torus lattices withN×N sites, and rectangle lattices with × +N N( 1) sites, and (c) three-dimensional
cubic lattices with × ×N N N sites. The optimal CH rate depends on the position of the exit site. The exit site is placed at the end on
chain lattices and a corner on square, rectangular, and cubic lattices as examples. Optimal CH rates given by the average remaining
population for all possible positions of the exit site are also considered for chain and square lattices. The curves are obtained by fitting
the function − = +p p b N c(1 ) ( )opt opt , andfitting parameters are shown in table C.1.We have supposed thatΓ = J3 and the

energy is initially located at a randomly chosen site.
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not unexpected since here the noise is advantageous for overcoming the locking effect as well asmaintaining a
broadmomentumdistribution.

Onemight ask if the random classical noise from anetworkʼs environment is an idealmeans ofmaximising
the transport efficiency, or whether othermechanismsmight lead to even higher efficiency. According to the
picturewe have presented, classical noise effectively rejuvenates thewholemomentumdistribution
indiscriminately. It would presumably be evenmore beneficial if one could somehowpreferentially rejuvenate
the low velocity states, leaving the high velocity state unperturbed.Wenowpresent a simple one-dimensional
example where this becomes possible when a global driving field is applied.

Let us assume that each lattice site possesses an additional excited state ∣ ′〉e (see figure 5(a)). These higher
excited levels form a second excited tier of the network, whichwill in general experience different hopping
strengths ′J . For simplicity let us assume for now that no classical noise is present and that the coupling strength
′J is negligible compared to J. (Note that only ′ ≠J J is a requirement for the control protocol described here, but
the present assumptionmakes the following argument particularly straightforward.) As a result, we have purely
quantum transport in the lower excitedmanifold spanned by the∣ 〉e i levels, governed by the hamiltonian 2
with p=0.

Letω be the energy difference between∣ 〉e and∣ ′〉e ; the application of global driving fields with frequencies
ω ± J2 will then drive transitions between low velocity∣ 〉e states (indicated by red circles infigure 5(a)) and ∣ ′〉e
states. At the same time, high-velocity transitions are detuned and thus suppressed. The drivingHamiltonian is
given by

⎡⎣ ⎤⎦∑ωσ σ Ω σ= − +ω′+ ′− ′+H Jte sin (2 ) h.c. , (16)
i

i i
t

id
i

where theRabi frequencyΩ is proportional to the intensity of the appliedfield, andσ = ∣ ′〉〈 ∣′+ e ei i and

σ = ∣ 〉〈 ′∣′− e ei i are ladder operators describing transitions between the state∣ 〉e and the state∣ ′〉e of the site i.
The only other process we require is dissipative relaxation from the second excited tier back into the lower

excitedmanifold, e.g. phonon-assisted transitionswhich randomise themomentumof the electronic state.
These can be described by the following Lindblad superoperator

⎜ ⎟⎛
⎝

⎞
⎠ ∑ρ γ σ ρσ σ σ ρ= −γ ′

−
′
+

′
+

′
−{ }1

2
, , (17)

i

i i i i

where γ is the decay rate from the state∣ ′〉e to the state∣ 〉e .
Under these circumstances, the population is preferentially pumped from low-velocity states to the excited

state, fromwhich it decays to anymomentum state (as shown infigure 5(b)). Thus by targeting the low-velocity
state we achieve amuch faster transfer (i.e. lower population remaining on the network) than for the optimal
quantum-classical hybrid network shown infigure 3(b).

In conclusion, we offer an intuitive explanation for the observation that classically assisted quantum
transport can bemore efficient than pure quantum evolution, even in systemswhere quantum locking is

Figure 5. (a) Level structure ofmolecules with driven transitions between the excited state∣ 〉e and the higher excited state∣ ′〉e . Because
of the hopping coupling, a ‘conduction’ bandwith thewidth J4 is formed around the energy of the state∣ 〉e . (b) Colourmap showing
the populations associatedwithmomentum eigenstates Pk on a networkwith driving fields; as infigure 3 (which shares the same
colour scale), a one-dimensional chain latticewithN=40 sites is considered as an example.Here, the Rabi frequencyΩ = J0.3 and
the decay rate γ = J0.4 . Comparisonwithfigure 3 shows that the population remaining on the network at time = −t J200 1 is
significantly smaller than for the passive optimal quantum-classical hybrid network (0.0024 versus 0.0473).
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negligible.We predict that the optimal level of classical noise will scale inversely with the linear dimension of the
array, and our numerical simulations have confirmed this behaviour for systems of up to 2500 sites. The picture
we have presented is one inwhich the classical environment acts to continually rejuvenate themomentum
distribution of the quantumparticle as it traverses the network. In general terms the existence of wave packet
components with low velocity can classed as an interference effect; here we have introduced amomentum
picturewhichwe believe provides the correct intuitive perspective for understanding this aspect of noise-
assisted quantum transport.We use the intuition gained from adopting this viewpoint to show that the use of
global driving fields can be farmore efficient than simple randomnoise.
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AppendixA.Deformed chains

In this appendixwe discuss an example of themomentum rejuvenationmechanism for a systemwhere there is
not even approximate quantum locking.

In uniform chains with the ‘exit’ site at one end, all eigenstates have finite amplitudes on the exit site given by
+N k2 ( 1) sin for the eigenstate∣ 〉k m. Hence, there is no strict quantum locking in these uniform chains

( π< <k0 ). However, in such a chain all states with a k close to 0 or π are only veryweakly coupled to the exit
site, whilst thosewith π∼k 2 havemaximal coupling. Theseweakly coupled statesmay then cause an
approximate quantum locking effect. Let us now instead consider a deformed chainwithN sites and the ‘exit’
site at one of the ends, for which theHamiltonian reads

Figure A1.Energy transport in deformed 1D chains ofN=40 sites with an ‘exit’ site at one end. The rates of classical hopping are
scaled according to the quantumhopping rates. (c) and (d) share the same colour scale withfigure 3.
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∑ σ σ= − − +
=

−
+

+
−( )H p J(1 ) h.c. , (A.1)

i

N

i i i

1

1

1

where = =−J J J2N1 1 and =≠ −J Ji N1, 1 . In this deformed chain, the eigenstates are given by

∑=
−

−k C
N

A k i i¯ 2

1
cos [ ( 1)] , (A.2)m k

i

N

i s

where π= −k n N( 1); = … −n N0, 2, , 1; = =−A A 1 2N1 1 , =≠ −A 1i N1, 1 ; = =πC C 1 20 and

=π≠C 1k 0, . The eigenenergy of the state ∣ 〉k̄ m is = − −E p J k¯ 2(1 ) cosk . For the amplitude of the state ∣ 〉k̄ m on

the exit site one finds −N1 2( 1) if π=k 0, and −N1 1 if π≠k 0, . Therefore, all eigenstates are equally
coupled to the exit site except two of them ( π=k 0, ) whose coupling is reduced by only a factor of 1 2 .

It is then fair to state that there is no significant level of quantum locking preventing transport to the exit site,
so that from the quantum locking picture onewould not expect noise to be advantageous. By contrast,
considering themomentum space distribution of the chain, we expect thatmomentum rejuvenation still ought
to play a beneficial role. Our numerical results shown infigure A1 confirm that the concept of noise-assisted
transport remains fully applicable. In this case this is clearly due to themomentum rejuvenation effect, rather
than quantum locking.

Appendix B.Disorder

Themomentum rejuvenationmechanism is robust to disorder as shown infigure B1 . In the presence of
disorder, pure quantum transport is slowed downbywave-function localisation [3, 39, 40, 48].However, as long
as there is no energy eigenstate that is completely decoupled from the exit site, the excitation can still eventually
leave the network to the reaction centre.When disorder is not too strong and themomentum eigenstates are still
a good approximation of the energy eigenstates (as is, e.g., the case for the 10% fluctuations in the quantum
hopping strength underlying figure B1), the picture ofmomentum rejuvenation enabling faster transport
remains valid. Generally speaking, disordered systems then benefit fromnoise both for overcoming localisation
aswell as formomentum rejuvenation. As long as the level of disorder is weak,momentum rejuvenation
continues to play themore important role in noise-assisted quantum transport.

AppendixC. Fitting parameters

The parameters used in the linefittings forfigure 4 are shown in table C.1. In table C.2 , we show the 95%
confidence interval of thefitting parameters forfigure 4, whichwere obtained by theMATLAB function ‘fit’.

AppendixD. Perimeter exit

For a rectangular network of the type shown infigureD1 , theHamiltonian reads

∑ ∑ϵ σ σ σ σ= − ++ − + −( )H J h.c. . (D.1)
i

i i i

i j

i j i j

,

,

Here, the on-site energy ϵi and quantumhopping strength Ji j, need not be all identical, but we assume that
≠J 0i j, for all nearest neighbour terms. If all sites on the perimeter are exit sites (yellow sites infigure D1), i.e.

coupled to the reaction centre, a locked state is an eigenstate of theHamiltonianwith zero amplitude on the
whole perimeter. In general, in the single-excitation subspace the locked state can bewritten as

TableC.1. Fitting parameters of curves infigure 4.

Lattice type b c

Chain 1.453 8.311

Chain—average 2.081 7.371

Ring 4.483 3.657

Square 1.493 1.128

Square—average 1.209 −1.17

Toric 2.404 −0.660

Rectangular 1.443 7.068

Cubic 1.29 −0.4443
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∑= c iLS , (D.2)s

i

i s

where the amplitude =c 0i for all  ∪∈i . Here, the set contains the four corner sites, and the set
contains all other sites on the perimeter. Furthermore, we use′ to denote sites on an imagined inner perimeter
(blue sites infigure D1), all of these are coupled to perimeter sites. Since,∣ 〉LS s is an eigenstate,
〈 ∣ ∣ 〉 =i H E cLS ,s s iLS whereELS is the eigenenergy of the locked state. For perimeter sites in ,

〈 ∣ ∣ 〉 ∣ = −∈ ′ ′i H LS J cs s i i i i, , where the site ′ ∈ ′i is the only off-perimeter site coupled to the perimeter site-i.
However, from  =∈c 0i and ≠′J 0i i, it follows that  =′∈ ′c 0i .

Therefore, for a state to be locked, not only does its amplitude on the perimeter have to be zero, its amplitude
on the inner perimetermust also vanish. Letting the inner perimeter now take the role of the exit sites and
repeating the previous discussion, onefinds by induction that a locked state possesses zero amplitude on the
whole network. In other words, there is no locked state for such a networkwith thewhole perimeter filled by exit
sites.

Figure B1. Energy transport in disordered 1D chains ofN=40 sites with an ‘exit’ site at one end. In these disordered chains, the
quantumhopping strength is normally distributedwith the average value − p J(1 ) and varianceσ = − p J0.1(1 ) . The populations
P(t) andPk (thereby t̄ ) are the average values obtained from1000 samples. Comparing (a) and (b)withfigure 2, the energy transport is
generally slowed down by the localisation effect. An optimal CH rate still exists in (b). As shown in (c) and (d) (which share the same
colour scale withfigure 3), themomentum rejuvenation is still significant in these disordered chains.

TableC.2. 95% confidence bounds offittings infigure 4.

Lattice type b c

Chain (1.429, 1.477) (7.892, 8.731)

Chain—average (2.041, 2.12) (6.093, 8.649)

Ring (4.435, 4.531) (3.441, 3.873)

Square (1.439, 1.547) (0.8296, 1.426)

Square—average (1.178, 1.239) (−1.292,−1.049)

Toric (2.286, 2.523) (−0.969,−0.352)

Rectangular (1.344, 1.541) (5.937, 8.200)

Cubic (1.071, 1.51) (−0.8898, 0.001 22)
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