80 research outputs found

    Sensory neurons are required for migration and axon pathfinding of relay motor neurons

    Get PDF
    The confluence Genil-Guadalquivir in Palma del Río (Córdoba), shows a system composed by four terraces of the Upper and Middle Pleistocene and two episodes of colluvial deposits. The Paleolithic sites (Acheulean and Middle Paleolithic) are linked to lateral bars and colluviums

    Influence of mesodermal Fgf8 on the differentiation of neural crest-derived postganglionic neurons

    Get PDF
    AbstractThe interaction between the cranial neural crest (NC) and the epibranchial placode is critical for the formation of parasympathetic and visceral sensory ganglia, respectively. However, the molecular mechanism that controls this intercellular interaction is unknown. Here we show that the spatiotemporal expression of Fibroblast growth factor 8 (Fgf8) is strategically poised to control this cellular relationship. A global reduction of Fgf8 in hypomorph embryos leads to an early loss of placode-derived sensory ganglia and reduced number of NC-derived postganglionic (PG) neurons. The latter finding is associated with the early loss of NC cells by apoptosis. This loss occurs concurrent with the interaction between the NC and placode-derived ganglia. Conditional knockout of Fgf8 in the anterior mesoderm shows that this tissue source of Fgf8 has a specific influence on the formation of PG neurons. Unlike the global reduction of Fgf8, mesodermal loss of Fgf8 leads to a deficiency in PG neurons that is independent of NC apoptosis or defects in placode-derived ganglia. We further examined the differentiation of PG precursors by using a quantitative approach to measure the intensity of Phox2b, a PG neuronal determinant. We found reduced numbers and immature state of PG precursors emerging from the placode-derived ganglia en route to their terminal target areas. Our findings support the view that global expression of Fgf8 is required for early NC survival and differentiation of placode-derived sensory neurons, and reveal a novel role for mesodermal Fgf8 on the early differentiation of the NC along the parasympathetic PG lineage

    Hoxb1 Controls Anteroposterior Identity of Vestibular Projection Neurons

    Get PDF
    The vestibular nuclear complex (VNC) consists of a collection of sensory relay nuclei that integrates and relays information essential for coordination of eye movements, balance, and posture. Spanning the majority of the hindbrain alar plate, the rhombomere (r) origin and projection pattern of the VNC have been characterized in descriptive works using neuroanatomical tracing. However, neither the molecular identity nor developmental regulation of individual nucleus of the VNC has been determined. To begin to address this issue, we found that Hoxb1 is required for the anterior-posterior (AP) identity of precursors that contribute to the lateral vestibular nucleus (LVN). Using a gene-targeted Hoxb1-GFP reporter in the mouse, we show that the LVN precursors originate exclusively from r4 and project to the spinal cord in the stereotypic pattern of the lateral vestibulospinal tract that provides input into spinal motoneurons driving extensor muscles of the limb. The r4-derived LVN precursors express the transcription factors Phox2a and Lbx1, and the glutamatergic marker Vglut2, which together defines them as dB2 neurons. Loss of Hoxb1 function does not alter the glutamatergic phenotype of dB2 neurons, but alters their stereotyped spinal cord projection. Moreover, at the expense of Phox2a, the glutamatergic determinants Lmx1b and Tlx3 were ectopically expressed by dB2 neurons. Our study suggests that the Hox genes determine the AP identity and diversity of vestibular precursors, including their output target, by coordinating the expression of neurotransmitter determinant and target selection properties along the AP axis

    Directed Neural Differentiation of Mouse Embryonic Stem Cells Is a Sensitive System for the Identification of Novel Hox Gene Effectors

    Get PDF
    The evolutionarily conserved Hox family of homeodomain transcription factors plays fundamental roles in regulating cell specification along the anterior posterior axis during development of all bilaterian animals by controlling cell fate choices in a highly localized, extracellular signal and cell context dependent manner. Some studies have established downstream target genes in specific systems but their identification is insufficient to explain either the ability of Hox genes to direct homeotic transformations or the breadth of their patterning potential. To begin delineating Hox gene function in neural development we used a mouse ES cell based system that combines efficient neural differentiation with inducible Hoxb1 expression. Gene expression profiling suggested that Hoxb1 acted as both activator and repressor in the short term but predominantly as a repressor in the long run. Activated and repressed genes segregated in distinct processes suggesting that, in the context examined, Hoxb1 blocked differentiation while activating genes related to early developmental processes, wnt and cell surface receptor linked signal transduction and cell-to-cell communication. To further elucidate aspects of Hoxb1 function we used loss and gain of function approaches in the mouse and chick embryos. We show that Hoxb1 acts as an activator to establish the full expression domain of CRABPI and II in rhombomere 4 and as a repressor to restrict expression of Lhx5 and Lhx9. Thus the Hoxb1 patterning activity includes the regulation of the cellular response to retinoic acid and the delay of the expression of genes that commit cells to neural differentiation. The results of this study show that ES neural differentiation and inducible Hox gene expression can be used as a sensitive model system to systematically identify Hox novel target genes, delineate their interactions with signaling pathways in dictating cell fate and define the extent of functional overlap among different Hox genes

    Loss of ATF2 Function Leads to Cranial Motoneuron Degeneration during Embryonic Mouse Development

    Get PDF
    The AP-1 family transcription factor ATF2 is essential for development and tissue maintenance in mammals. In particular, ATF2 is highly expressed and activated in the brain and previous studies using mouse knockouts have confirmed its requirement in the cerebellum as well as in vestibular sense organs. Here we present the analysis of the requirement for ATF2 in CNS development in mouse embryos, specifically in the brainstem. We discovered that neuron-specific inactivation of ATF2 leads to significant loss of motoneurons of the hypoglossal, abducens and facial nuclei. While the generation of ATF2 mutant motoneurons appears normal during early development, they undergo caspase-dependent and independent cell death during later embryonic and foetal stages. The loss of these motoneurons correlates with increased levels of stress activated MAP kinases, JNK and p38, as well as aberrant accumulation of phosphorylated neurofilament proteins, NF-H and NF-M, known substrates for these kinases. This, together with other neuropathological phenotypes, including aberrant vacuolisation and lipid accumulation, indicates that deficiency in ATF2 leads to neurodegeneration of subsets of somatic and visceral motoneurons of the brainstem. It also confirms that ATF2 has a critical role in limiting the activities of stress kinases JNK and p38 which are potent inducers of cell death in the CNS

    Prolactin increases CD4/CD8 cell ratio in thymus-grafted congenitally athymic nude mice.

    No full text
    corecore