3,129 research outputs found

    Exact dynamics in the inhomogeneous central-spin model

    Full text link
    We study the dynamics of a single spin-1/2 coupled to a bath of spins-1/2 by inhomogeneous Heisenberg couplings including a central magnetic field. This central-spin model describes decoherence in quantum bit systems. An exact formula for the dynamics of the central spin is presented, based on the Bethe ansatz. This formula is evaluated explicitly for initial conditions such that the bath spins are completely polarized at the beginning. For this case we find, after an initial decay, a persistent oscillatory behaviour of the central spin. For a large number of bath spins NbN_b, the oscillation frequency is proportional to NbN_b, whereas the amplitude behaves like 1/Nb1/N_b, to leading order. No asymptotic decay due to the non-uniform couplings is observed, in contrast to some recent studies.Comment: 7 pages, 3 figure

    Yang-Baxter equation in spin chains with long range interactions

    Get PDF
    We consider the su(n) su(n) spin chains with long range interactions and the spin generalization of the Calogero-Sutherland models. We show that their properties derive from a transfer matrix obeying the Yang-Baxter equation. We obtain the expression of the conserved quantities and we diagonalize them.Comment: Saclay-t93/00

    Laughlin's wave functions, Coulomb gases and expansions of the discriminant

    Full text link
    In the context of the fractional quantum Hall effect, we investigate Laughlin's celebrated ansatz for the groud state wave function at fractional filling of the lowest Landau level. Interpreting its normalization in terms of a one component plasma, we find the effect of an additional quadrupolar field on the free energy, and derive estimates for the thermodynamically equivalent spherical plasma. In a second part, we present various methods for expanding the wave function in terms of Slater determinants, and obtain sum rules for the coefficients. We also address the apparently simpler question of counting the number of such Slater states using the theory of integral polytopes.Comment: 97 pages, using harvmac (with big option recommended) and epsf, 7 figures available upon request, Saclay preprint Spht 93/12

    Phenomenology of chiral damping in noncentrosymmetric magnets

    Full text link
    A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry breaking. We show that the magnetic damping tensor adopts a general form that accounts for a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which spin pumping in the presence of anomalous Hall effect and an effective "ss-dd" Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain wall motion is investigated in the flow and creep regimes. These predictions have major importance in the context of field- and current-driven texture motion in noncentrosymmetric (ferro-, ferri-, antiferro-)magnets, not limited to metals.Comment: 5 pages, 2 figure

    The spin 1/2 Calogero-Gaudin System and its q-Deformation

    Full text link
    The spin 1/2 Calogero-Gaudin system and its q-deformation are exactly solved: a complete set of commuting observables is diagonalized, and the corresponding eigenvectors and eigenvalues are explicitly calculated. The method of solution is purely algebraic and relies on the co-algebra simmetry of the model.Comment: 15 page

    Momentum distribution of a freely expanding Lieb-Liniger gas

    Get PDF
    We numerically study free expansion of a few Lieb-Liniger bosons, which are initially in the ground state of an infinitely deep hard-wall trap. Numerical calculation is carried out by employing a standard Fourier transform, as follows from the Fermi-Bose transformation for a time-dependent Lieb-Liniger gas. We study the evolution of the momentum distribution, the real-space single-particle density, and the occupancies of natural orbitals. Our numerical calculation allows us to explore the behavior of these observables in the transient regime of the expansion, where they are non-trivially affected by the particle interactions. We derive analytically (by using the stationary phase approximation) the formula which connects the asymptotic shape of the momentum distribution and the initial state. For sufficiently large times the momentum distribution coincides (up to a simple scaling transformation) with the shape of the real-space single-particle density (the expansion is asymptotically ballistic). Our analytical and numerical results are in good agreement.Comment: small changes; references correcte

    Dynamics and decoherence in the central spin model using exact methods

    Full text link
    The dynamics and decoherence of an electronic spin-1/2 qubit coupled to a bath of nuclear spins via hyperfine interactions in a quantum dot is studied. We show how exact results from the integrable solution can be used to understand the dynamic behavior of the qubit. It is possible to predict the main frequency contributions and their broadening for relatively general initial states analytically, leading to an estimate of the corresponding decay times. Furthermore, for a small bath polarization, a new low-frequency time scale is observed.Comment: 4 pages, 2 figures. Published version. See also http://www.physik.uni-kl.de/eggert/papers/index.htm

    Geometry of quantum observables and thermodynamics of small systems

    Full text link
    The concept of ergodicity---the convergence of the temporal averages of observables to their ensemble averages---is the cornerstone of thermodynamics. The transition from a predictable, integrable behavior to ergodicity is one of the most difficult physical phenomena to treat; the celebrated KAM theorem is the prime example. This Letter is founded on the observation that for many classical and quantum observables, the sum of the ensemble variance of the temporal average and the ensemble average of temporal variance remains constant across the integrability-ergodicity transition. We show that this property induces a particular geometry of quantum observables---Frobenius (also known as Hilbert-Schmidt) one---that naturally encodes all the phenomena associated with the emergence of ergodicity: the Eigenstate Thermalization effect, the decrease in the inverse participation ratio, and the disappearance of the integrals of motion. As an application, we use this geometry to solve a known problem of optimization of the set of conserved quantities---regardless of whether it comes from symmetries or from finite-size effects---to be incorporated in an extended thermodynamical theory of integrable, near-integrable, or mesoscopic systems

    Polarization Suppression and Nonmonotonic Local Two-Body Correlations in the Two-Component Bose Gas in One Dimension

    Get PDF
    We study the interplay of quantum statistics, strong interactions and finite temperatures in the two-component (spinor) Bose gas with repulsive delta-function interactions in one dimension. Using the Thermodynamic Bethe Ansatz, we obtain the equation of state, population densities and local density correlation numerically as a function of all physical parameters (interaction, temperature and chemical potentials), quantifying the full crossover between low-temperature ferromagnetic and high-temperature unpolarized regimes. In contrast to the single-component, Lieb-Liniger gas, nonmonotonic behaviour of the local density correlation as a function of temperature is observed.Comment: 4 pages, 6 figure

    Correlation functions of integrable models: a description of the ABACUS algorithm

    Get PDF
    Recent developments in the theory of integrable models have provided the means of calculating dynamical correlation functions of some important observables in systems such as Heisenberg spin chains and one-dimensional atomic gases. This article explicitly describes how such calculations are generally implemented in the ABACUS C++ library, emphasizing the universality in treatment of different cases coming as a consequence of unifying features within the Bethe Ansatz.Comment: 30 pages, 8 figures, Proceedings of the CRM (Montreal) workshop on Integrable Quantum Systems and Solvable Statistical Mechanics Model
    corecore