193 research outputs found

    Topological Charge and the Spectrum of the Fermion Matrix in Lattice-QED_2

    Full text link
    We investigate the interplay between topological charge and the spectrum of the fermion matrix in lattice-QED_2 using analytic methods and Monte Carlo simulations with dynamical fermions. A new theorem on the spectral decomposition of the fermion matrix establishes that its real eigenvalues (and corresponding eigenvectors) play a role similar to the zero eigenvalues (zero modes) of the Dirac operator in continuous background fields. Using numerical techniques we concentrate on studying the real part of the spectrum. These results provide new insights into the behaviour of physical quantities as a function of the topological charge. In particular we discuss fermion determinant, effective action and pseudoscalar densities.Comment: 33 pages, 10 eps-figures; reference adde

    Discussing the U(1)-problem of QED2_{2} without instantons

    Get PDF
    We construct QED_2 with mass and flavor and an extra Thirring term. The vacuum expectation values are carefully decomposed into clustering states using the U(1)-axial symmetry of the considered operators and a limiting procedure. The properties of the emerging expectation functional are compared to the proposed theta-vacuum of QCD. The massive theory is bosonized to a generalized Sine-Gordon model (GSG). The structure of the vacuum of QED_2 manifests itself in symmetry properties of the GSG. We study the U(1)-problem and derive a Witten-Veneziano-type formula for the masses of the pseudoscalars determined from a semiclassical approximation

    Calorons, instantons and constituent monopoles in SU(3) lattice gauge theory

    Full text link
    We analyze the zero-modes of the Dirac operator in quenched SU(3) gauge configurations at non-zero temperature and compare periodic and anti-periodic temporal boundary conditions for the fermions. It is demonstrated that for the different boundary conditions often the modes are localized at different space-time points and have different sizes. Our observations are consistent with patterns expected for Kraan - van Baal solutions of the classical Yang-Mills equations. These solutions consist of constituent monopoles and the zero-modes are localized on different constituents for different boundary conditions. Our findings indicate that the excitations of the QCD vacuum are more structured than simple instanton-like lumps.Comment: Remarks added. To appear in Phys. Rev.

    Testing the self-duality of topological lumps in SU(3) lattice gauge theory

    Get PDF
    We discuss a simple formula which connects the field-strength tensor to a spectral sum over certain quadratic forms of the eigenvectors of the lattice Dirac operator. We analyze these terms for the near zero-modes and find that they give rise to contributions which are essentially either self-dual or anti self-dual. Modes with larger eigenvalues in the bulk of the spectrum are more dominated by quantum fluctuations and are less (anti) self-dual. In the high temperature phase of QCD we find considerably reduced (anti) self-duality for the modes near the edge of the spectral gap.Comment: Remarks added, to appear in Phys. Rev. Let

    Topology and Duality in Abelian Lattice Theories

    Get PDF
    We show how to obtain the dual of any lattice model with inhomogeneous local interactions based on an arbitrary Abelian group in any dimension and on lattices with arbitrary topology. It is shown that in general the dual theory contains disorder loops on the generators of the cohomology group of a particular dimension. An explicit construction for altering the statistical sum to obtain a self-dual theory, when these obstructions exist, is also given. We discuss some applications of these results, particularly the existence of non-trivial self-dual 2-dimensional Z_N theories on the torus. In addition we explicitly construct the n-point functions of plaquette variables for the U(1) gauge theory on the 2-dimensional g-tori.Comment: 11 pages, LateX, 1 epsf figure; minor typos corrected and references update

    Chiral symmetry restoration and the Z3 sectors of QCD

    Full text link
    Quenched SU(3) lattice gauge theory shows three phase transitions, namely the chiral, the deconfinement and the Z3 phase transition. Knowing whether or not the chiral and the deconfinement phase transition occur at the same temperature for all Z3 sectors could be crucial to understand the underlying microscopic dynamics. We use the existence of a gap in the Dirac spectrum as an order parameter for the restoration of chiral symmetry. We find that the spectral gap opens up at the same critical temperature in all Z3 sectors in contrast to earlier claims in the literature.Comment: 4 pages, 4 figure
    • …
    corecore