45 research outputs found

    Quantitative Renal Vascular Casting in Nephrology Research

    Get PDF
    The present paper describes the use of a quantitative renal vascular casting method to study the changes associated with kidney disease. Several animal models of hypertension (spontaneously hypertensive rat, SHR, with its normotensive rat the Wistar Kyoto, WKY; Dahl salt sensitive DS - hypertensive, and salt resistant DR -normotensive) were examined at time points when the systemic blood pressure was rising (6 and 12 weeks of age) and following renal denervation (in SHR-WKY rats). The SHR appears to have a smaller caliber afferent arteriole at both 6 and 12 weeks of age. This difference is probably not entirely due to sympathetic vasoconstriction since the strain related afferent arteriolar diameter difference was still present after renal denervation. In the Dahl rats, there is not much of an intrarenal vascular difference between the DS and DR rats with the only real finding of a smaller distal afferent arteriolar diameter found in outer cortical nephrons of the DR. The two models of acute renal failure (ARF) that were studied include, a) the glycerol model (known to initially cause an intense vasoconstriction) and b) gentamicin, a nephrotoxic antibiotic. Two time points were examined for each of these models. As expected in the glycerol model there was an intense vasoconstriction at three hours which essentially was gone at 3 days-a time when the renal failure was fulminant. The glomerulus appeared to be contracted at three hours as well. In the gentamicin model no renal vascular alteration was seen at 6 days, when renal failure was mild while at 10 days, when renal failure was pronounced, outer cortical afferent arterioles appeared to be moderately constricted. In the 5/6 nephrectomy model of chronic renal failure, the glomeruli were smaller in rats in renal failure than in the controls

    Quantitative Vascular Casting of the Post-Ischemic Hydronephrotic Kidney

    Get PDF
    The renal microvasculature (afferent arteriole) and glomeruli were examined and quantitated by two methods in the post-ischemic hydronephrotic (PIH) kidney. The methods used were: 1) an in vivo examination and 2) controlled perfusion-fixation, quantitative vascular casting examined by scanning electron microscopy. The second method was also applied to the vasculature of the contralateral, functional kidney. The goals of the study were to: 1) validate the quantitative vascular casting method by comparing PIH renal microvascular data from the casting method with in vivo values and 2) determine the extent of microvascular dimensional difference of the PIH kidney from its contralateral functional counterpart. It was determined that the casting values were consistent with the data obtained from the in vivo examination of the afferent arteriole and glomeruli. This finding provides further support for the quantitative renal microvascular casting technique. Using that technique it was determined that the dimensions of the microvasculature and glomeruli of the PIH kidney were severely (and significantly, p\u3c0.05) reduced compared to its functional mate. Since these PIH vessels show a significant decrement in size, vascular reactivity and functional data based on the PIH vessels should be looked at cautiously. The vasculature and glomeruli of the PIH kidney might not be totally normal, however structurally, the glomeruli do not appear to be dramatically altered

    Adverse mandibular bone effects associated with kidney disease are only partially corrected with bisphosphonate and/or calcium treatment

    Get PDF
    Bone Biology Laboratory http://www.iupui.edu/~bonelab/ Department of Anatomy and Cell Biology Indiana University School of Medicine Department of Biomedical Engineering IUPUIBackground/Aims: Patients with chronic kidney disease (CKD) have high prevalence of periodontal disease that may predispose to tooth loss and inflammation. The goal of this study was to test the hypotheses that a genetic rat model of progressive CKD would exhibit altered oral bone properties and that treatment with either bisphosphonates or calcium could attenuate these adverse changes. Methods: At 25 weeks of age, rats were treated with zoledronate, calcium gluconate, or their combination for 5 or 10 weeks. Mandible bone properties were assessed using micro-computed tomography to determine bone volume (BV/TV) and cementenamel junction to alveolar crest distance (CEJ-AC). Results: Untreated CKD animals had significantly lower BV/TV at both 30 (-5%) and 35 (-14%) weeks of age and higher CEJ-AC (+27 and 29%) compared to normal animals. CKD animals had significantly higher PTH compared to normal animals yet similar levels of C-reactive protein. Zoledronate-treatment normalized BV/TV over the first 5 weeks but this benefit was lost by 10 weeks. Calcium treatment, alone or in combination with zoledronate, was effective in normalizing BV/TV at both time points. Neither zoledronate nor calcium was able to correct the higher CEJ-AC caused by CKD. Calcium, but not zoledronate, significantly reduced serum parathyroid hormone (PTH) while neither treatment affected C-reactive protein. Conclusions: 1) this progressive animal model of chronic kidney disease shows a clear mandibular skeletal phenotype consistent with periodontitis, 2) the periodontitis is not associated with systemic inflammation as measured by C-reactive protein, and 3) reducing PTH has positive effects on the mandible phenotype.This work was supported by NIH grant (AR058005). We would like to thank Dr. Xianming Chen, Mr. Alex Carr and Mr. Drew Brown for their assistance with the biochemical assays, breeding colony and micro CT scanning/analysis, respectively

    A comparison of calcium to zoledronic acid for improvement of cortical bone in an animal model of CKD

    Get PDF
    Bone Biology Laboratory http://www.iupui.edu/~bonelab/ Department of Anatomy and Cell Biology Indiana University School of MedicinePatients with chronic kidney disease (CKD) have increased risk of fractures, yet the optimal treatment is unknown. In secondary analyses of large randomized trials, bisphosphonates have been shown to improve bone mineral density and reduce fractures. However, bisphosphonates are currently not recommended in patients with advanced kidney disease due to concern about over-suppressing bone remodeling, which may increase the risk of developing arterial calcification. In the present study we used a naturally occurring rat model of CKD with secondary hyperparathyroidism, the Cy/+ rat, and compared the efficacy of treatment with zoledronic acid, calcium given in water to simulate a phosphate binder, and the combination of calcium and zoledronic acid. Animals were treated beginning at 25 weeks of age (approximately 30% of normal renal function) and followed for ten weeks. The results demonstrate that both zoledronic acid and calcium improved bone volume by microCT and both equally suppressed mineral apposition rate, bone formation rate, and mineralizing surface of trabecular bone. In contrast, only calcium treatment with or without zoledronic acid improved cortical porosity and cortical biomechanical properties (ultimate load and stiffness) and lowered parathyroid hormone (PTH). However, only calcium treatment led to the adverse effects of increased arterial calcification and fibroblast growth factor 23 (FGF23). These results suggest zoledronic acid may improve trabecular bone volume in CKD in the presence of secondary hyperparathyroidism, but does not benefit extraskeletal calcification or cortical biomechanical properties. Calcium effectively reduces PTH and benefits both cortical and trabecular bone yet increases the degree of extra skeletal calcification.This work was supported by the NIH NIAMS R01 5R01AR058005 (SMM) and S10-RR023710 (microCT equipment grant). We thank Drew Brown for tissue dissections, CT scanning and analysis

    Anti-Sclerostin Antibody Treatment in a Rat Model of Progressive Renal Osteodystrophy

    Get PDF
    Chronic Kidney Disease (CKD) is associated with abnormalities in bone quantity and quality leading to increased fractures. Recent studies suggest abnormalities of Wnt signaling in animal models of CKD and elevated sclerostin levels in patients with CKD. The goal of this study was to evaluate the effectiveness of anti-sclerostin antibody treatment in an animal model of progressive CKD with low and high parathyroid hormone (PTH) levels. Cy/+ male rats (CKD) were treated without or with calcium in the drinking water at 25 weeks of age to stratify the animals into high PTH and low PTH groups, respectively, by 30 weeks. Animals were then treated with anti-sclerostin antibody at 100 mg/kg IV weekly for 5 doses, a single 20 ug/kg subcutaneous dose of zoledronic acid, or no treatment and sacrificed at 35 weeks. As a positive control, the efficacy of anti-sclerostin antibody treatment was also evaluated in normal littermates. The results demonstrated that the CKD animals with high PTH had lower calcium, higher phosphorus, and lower FGF23 compared to the CKD animals with low PTH. Treatment with anti-sclerostin Ab had no effect on any of the biochemistries, while zoledronic acid lowered dkk-1 levels. The anti-sclerostin antibody increased trabecular BV/TV., trabecular mineralization surface, in animals with low, but not high, PTH. Neither anti-sclerostin antibody nor zoledronic acid improved biomechanical properties in the animals. Cortical porosity was severe in high PTH animals and unaffected by either treatment. In contrast, in normal animals treated with anti-sclerostin antibody, there was an improvement in bone volume, cortical geometry, and biomechanical properties. In summary, this is the first study to test the efficacy of anti-sclerostin Ab treatment on animals with advanced CKD. We found efficacy in improving bone properties only when the PTH levels were low.NIH AR 058005 and Novartis

    Acceleration of the Meckel Syndrome by Near-Infrared Light Therapy

    Get PDF
    www.karger.com/nne This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License (www.karger.com/OA-license), applicable to the online version of the article only. Distribution for non-commercial purposes only

    STOX1 deficiency is associated with renin-mediated gestational hypertension and placental defects

    Get PDF
    The pathogenesis of preeclampsia and other hypertensive disorders of pregnancy remains poorly defined despite the substantial burden of maternal and neonatal morbidity associated with these conditions. In particular, the role of genetic variants as determinants of disease susceptibility is understudied. Storkhead-box protein 1 (STOX1) was first identified as a preeclampsia risk gene through family-based genetic linkage studies in which loss-of-function variants were proposed to underlie increased preeclampsia susceptibility. We generated a genetic Stox1 loss-of-function mouse model (Stox1 KO) to evaluate whether STOX1 regulates blood pressure in pregnancy. Pregnant Stox1-KO mice developed gestational hypertension evidenced by a significant increase in blood pressure compared with WT by E17.5. While severe renal, placental, or fetal growth abnormalities were not observed, the Stox1-KO phenotype was associated with placental vascular and extracellular matrix abnormalities. Mechanistically, we found that gestational hypertension in Stox1-KO mice resulted from activation of the uteroplacental renin-angiotensin system. This mechanism was supported by showing that treatment of pregnant Stox1-KO mice with an angiotensin II receptor blocker rescued the phenotype. Our study demonstrates the utility of genetic mouse models for uncovering links between genetic variants and effector pathways implicated in the pathogenesis of hypertensive disorders of pregnancy

    Anti-sclerostin antibody treatment in a rat model of progressive renal osteodystrophy

    No full text
    Chronic kidney disease (CKD) is associated with abnormalities in bone quantity and quality, leading to increased fractures. Recent studies suggest abnormalities of Wnt signaling in animal models of CKD and elevated sclerostin levels in patients with CKD. The goal of this study was to evaluate the effectiveness of anti-sclerostin antibody treatment in an animal model of progressive CKD with low and high parathyroid hormone (PTH) levels. Cy/+ male rats (CKD) were treated without or with calcium in the drinking water at 25 weeks of age to stratify the animals into high PTH and low PTH groups, respectively, by 30 weeks. Animals were then treated with anti-sclerostin antibody at 100 mg/kg i.v. weekly for 5 doses, a single 20-mg/kg subcutaneous dose of zoledronic acid, or no treatment, and were then euthanized at 35 weeks. As a positive control, the efficacy of anti-sclerostin antibody treatment was also evaluated in normal littermates. The results demonstrated that the CKD animals with high PTH had lower calcium, higher phosphorus, and lower FGF23 compared to the CKD animals with low PTH. Treatment with anti-sclerostin antibody had no effect on any of the biochemistries, whereas zoledronic acid lowered dkk-1 levels. The anti-sclerostin antibody increased trabecular bone volume/total volume (BV/TV) and trabecular mineralization surface in animals with low PTH, but not in animals with high PTH. Neither anti-sclerostin antibody nor zoledronic acid improved biomechanical properties in the animals. Cortical porosity was severe in high-PTH animals and was unaffected by either treatment. In contrast, in normal animals treated with anti-sclerostin antibody, there was an improvement in bone volume, cortical geometry, and biomechanical properties. In summary, this is the first study to test the efficacy of anti-sclerostin antibody treatment on animals with advanced CKD. We found efficacy in improving bone properties only when the PTH levels were low
    corecore