204 research outputs found

    Bispecific antibodies targeting tumor-associated antigens and neutralizing complement regulators increase the efficacy of antibody-based immunotherapy in mice.

    Get PDF
    The efficacy of antibody-based immunotherapy is due to the activation of apoptosis, the engagement of antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity (CDC). We developed a novel strategy to enhance CDC using bispecific antibodies (bsAbs) that neutralize the C-regulators CD55 and CD59 to enhance C-mediated functions. Two bsAbs (MB20/55 and MB20/59) were designed to recognize CD20 on one side. The other side neutralizes CD55 or CD59. Analysis of CDC revealed that bsAbs could kill 4 to 25 times more cells than anti-CD20 recombinant antibody in cell lines or cells isolated from patients with chronic lymphocytic leukemia. The pharmacokinetics of the bsAbs was evaluated in a human-SCID model of Burkitt lymphoma. The distribution profile of bsAbs mimics the data obtained by studying the pharmacokinetics of anti-CD20 antibodies, showing a peak in the tumor mass 3-4 days after injection. The treatment with bsAbs completely prevented the development of human/SCID lymphoma. The tumor growth was blocked by the activation of the C cascade and by the recruitment of macrophages, PMN and NK cells. This strategy can easily be applied to the other anti-tumor C-fixing antibodies currently used in the clinic or tested in preclinical studies using the same vector with the appropriate modifications

    A combination of an anti-SLAMF6 antibody and ibrutinib efficiently abrogates expansion of chronic lymphocytic leukemia cells

    Get PDF
    The signaling lymphocyte activation molecule family [SLAMF] of cell surface receptors partakes in both the development of several immunocyte lineages and innate and adaptive immune responses in humans and mice. For instance, the homophilic molecule SLAMF6 (CD352) is in part involved in natural killer T cell development, but also modulates T follicular helper cell and germinal B cell interactions. Here we report that upon transplantation of a well-defined aggressive murine B220+CD5+ Chronic Lymphocytic Leukemia (CLL) cell clone, TCL1-192, into SCID mice one injection of a monoclonal antibody directed against SLAMF6 (αSlamf6) abrogates tumor progression in the spleen, bone marrow and blood. Similarly, progression of a murine B cell lymphoma, LMP2A/λMyc, was also eliminated by αSlamf6. But, surprisingly, αSLAMF6 neither eliminated TCL1-192 nor LMP2A/λMyc cells, which resided in the peritoneal cavity or omentum. This appeared to be dependent upon the tumor environment, which affected the frequency of sub-populations of the TCL1-192 clone or the inability of peritoneal macrophages to induce Antibody Dependent Cellular Cytotoxicity (ADCC). However, co-administering αSlamf6 with the Bruton tyrosine kinase (Btk) inhibitor, ibrutinib, synergized to efficiently eliminate the tumor cells in the spleen, bone marrow, liver and the peritoneal cavity. Because an anti-human SLAMF6 mAb efficiently killed human CLL cells in vitro and in vivo, we propose that a combination of αSlamf6 with ibrutinib should be considered as a novel therapeutic approach for CLL and other B cell tumors

    A new approach for the treatment of CLL using chlorambucil/hydroxychloroquine-loaded anti-CD20 nanoparticles

    Get PDF
    Current approaches for the treatment of chronic lymphocytic leukemia (CLL) have greatly improved the prognosis for survival, but some patients remain refractive to these therapeutic regimens. Hence, in addition to reducing the long-term sideeffects of therapeutics for all leukemia patients, there is an urgent need for novel therapeutic strategies for difficult-to-treat leukemia cases. Due to the cytotoxicity of drugs, the major challenge currently is to deliver the therapeutic agents to neoplastic cells while preserving the viability of non-malignant cells. In this study, we propose a therapeutic approach in which high doses of hydroxychloroquine and chlorambucil were loaded into biodegradable polymeric nanoparticles coated with an anti-CD20 antibody.We first demonstrated the ability of the nanoparticles to target and internalize in tumor B-cells. Moreover, these nanoparticles could kill not only p53-mutated/deleted leukemia cells expressing a low amount of CD20, but also circulating primary cells isolated from chronic lymphocytic leukemia patients. The safety of these nanoparticles was also demonstrated in healthy mice, and their therapeutic effects were shown in a new model of aggressive leukemia. These results showed that anti-CD20 nanoparticles containing hydroxychloroquine and chlorambucil can be effective in controlling aggressive leukemia and provided a rationale for adopting this approach for the treatment of other B-cell disorders. [Figure not available: see fulltext.

    Long-term effects of the new direct antiviral agents (DAAs) therapy for HCV-related mixed cryoglobulinaemia without renal involvement: a multicentre open-label study

    Get PDF
    Objective. To investigate the long-term effects and safety of new direct antiviral agents (DAAs) in patients with hepatitis C virus (HCV)-related mixed cryoglobulinaemia (MC) without renal involvement.Methods. The study enrolled 22 consecutive patients, 19 received sofosbuvir-based regimen and three patients received other DAAs, individually tailored according to latest guidelines. As of December 2016, the median length of follow-up was 17 months (range 13-21).Results. Extra-hepatic manifestations at enrollment were: purpura and arthralgia (12 cases), peripheral neuropathy (10 cases) and marginal zone Blymphomas (2 cases). After a four-week DAA therapy, all patients became HCV-negative. Moreover, after 48 weeks since the beginning of DAA treatment, sustained regression of purpura and arthralgias was observed respectively in eight and in nine cases; peripheral neuropathy improved in seven cases, and cryocrit median values decreased from three (1-20) at baseline to two (1-12) after 48 weeks. Two cases with indolent marginal zone lymphomas did not show any haematological response: size and number of the involved nodes remained unchanged. In addition, the monoclonal B-cell population found in the peripheral blood in four cases did not disappear after recovery from HCV-RNA. Mild side effects occurred in nine patients, but six patients developed ribavirin-related anaemia requiring reduction of ribavirin dose.Conclusion. DAA therapy is safe and effective to eradicate HCV in MC, but seems associated with satisfactory clinical response in mild or moderate cryoglobulinaemic vasculitis and no response in B-NHL

    Common biological phenotypes characterize the acquisition of platinum-resistance in epithelial ovarian cancer cells

    Get PDF
    Standard of care for Epithelial Ovarian Cancer (EOC) patients relies on platinum-based therapy. However, acquired resistance to platinum occurs frequently and predicts poor prognosis. To understand the mechanisms underlying acquired platinum-resistance, we have generated and characterized three platinum-resistant isogenic EOC cell lines. Resistant cells showed 3-to 5- folds increase in platinum IC50. Cross-resistance to other chemotherapeutic agents commonly used in the treatment of EOC patients was variable and dependent on the cell line utilized. Gene expression profiling (GEP) of coding and non-coding RNAs failed to identify a common signature that could collectively explain the mechanism of resistance. However, we observed that all resistant cell lines displayed a decreased level of DNA platination and a faster repair of damaged DNA. Furthermore, all platinum resistant cell lines displayed a change in their morphology and a higher ability to grown on mesothelium. Overall, we have established and characterized three new models of platinum-resistant EOC cell lines that could be exploited to further dissect the molecular mechanisms underlying acquired resistance to platinum. Our work also suggests that GEP studies alone, at least when performed under basal culture condition, do not represent the optimal way to identify molecular alterations linked to DNA repair pathway defects

    CD90/Thy-1 is preferentially expressed on blast cells of high risk acute myeloid leukaemias

    Get PDF
    Different transformation mechanisms have been proposed for elderly acute myeloid leukaemia (AML) and secondary AML (sAML) when compared with de novo AML or AML of younger patients. However, little is known regarding differences in the immunophenotypic profile of blast cells in these diseases. We systematically analysed, by flow cytometry, 148 patients affected by de novo (100 cases) or sAML (48 cases). By defining a cut-off level of 20% of CD34+ cells co-expressing CD90, the frequency of CD90+ cases was higher in sAML (40%) versus de novo AML (6%, P < 0.001), elderly AML (>60 years) (24%) versus AML of younger patients (10%, P = 0.010) and poor- versus good-risk karyotypes (according to the Medical Research Council classification, P < 0.001). The correlation between CD90 expression, sAML and unfavourable karyotypes was confirmed by analysing the subset of CD34+ AML cases alone (91/148). Consistently, univariate analysis showed that expression of CD90 was statistically relevant in predicting a shorter survival in CD90+ AML patients (P = 0.042). Our results, demonstrating CD90 expression in AML with unfavourable clinical and biological features, suggest an origin of these diseases from a CD90-expressing haemopoietic progenitor and indicate the use of CD90 as an additional marker of prognostic value in AML

    The addition of rituximab to fludarabine improves clinical outcome in untreated patients with ZAP-70-negative chronic lymphocytic leukemia.

    Get PDF
    Clinical trials of monoclonal antibodies in combination with chemotherapy have reported previously unattained response rates in patients with B-cell chronic lymphocytic leukemia (B-CLL); however, the analysis of ZAP-70 protein and/or CD38 may explain better the discordant outcomes independent of treatment
    • 

    corecore