8 research outputs found

    Patients with MCI and N400 or P600 abnormalities are at very high risk for conversion to dementia

    No full text
    OBJECTIVE: We sought cognitive event-related potential (ERP) biomarkers of disease progression and subsequent conversion to dementia in mild cognitive impairment (MCI). BACKGROUND: Two ERP components, the P600 and N400, are sensitive to abnormal episodic/declarative memory and semantic processing. When congruous category-exemplars are repeated, smaller P600s (relative to initial presentation) are normally elicited. Repetitions of semantically incongruous words yield smaller N400 amplitude. In mild Alzheimer disease (AD), abnormalities of both the N400 and P600 repetition effects are present, suggesting a wide-spread failure of synaptic plasticity. METHODS: Patients with amnestic MCI (n = 32) were longitudinally studied annually with an ERP paradigm in which semantically congruous (50%) and incongruous target words are repeated 10 to 140 seconds after initial presentation. ERP data were analyzed to contrast MCI-to-AD converters (within 3 years) vs nonconverters, using split-plot analyses of variance. RESULTS: A statistically significant P600 congruous word repetition effect was found only in the nonconverter group (F = 9.9, p = 0.005 vs MCI converters). This effect correlated with verbal memory measures. Repetition of incongruous words produced a significant N400 amplitude attenuation (across right-hemisphere sites) in nonconverters, but not in converters. Patients with MCI with abnormal/reduced N400 or P600 word repetition effects had an 87 to 88% likelihood of dementia within 3 years while those with normal/spared N400 and P600 repetition effects had only an 11 to 27% likelihood. CONCLUSIONS: Abnormalities of the P600 or N400 in mild cognitive impairment are associated with an increased risk of subsequent conversion to Alzheimer disease (AD). These event-related potential components may offer useful biomarkers for the detection and staging of very early AD

    FMRI congruous word repetition effects reflect memory variability in normal elderly

    No full text
    Neural circuits mediating repetition effect for semantically congruous words on functional MRI were investigated in seventeen normal elderly (mean age = 70). Participants determined if written words were semantically congruent (50% probability) with spoken statements. Subsequent cued-recall revealed robust explicit memory only for congruous items (83% versus 8% for incongruous). Event-related BOLD responses to New > Old congruous words were found in the left > right cingulate and fusiform gyri, left parahippocampal cortex, middle and inferior frontal gyri (IFG). A group with above-median subsequent recall had markedly more widespread BOLD responses than a Low-Recall subgroup, with larger responses in the left medial temporal lobe (LMTL), IFG, and bilateral cingulate gyri. The magnitude of LMTL activation (New–Old) correlated with subsequent cued-recall, while the spatial extent of LMTL activation (New > Old) correlated with recall and recognition. Both magnitude and spatial extent of left fusiform activation correlated with subsequent recall/recognition. A neural circuit of left-hemisphere brain regions, many identified as P600 generators by invasive electrophysiological studies, was activated by New > Old congruous words, likely mediating successful verbal encoding
    corecore