508 research outputs found

    The Extrasolar Planet epsilon Eridani b - Orbit and Mass

    Full text link
    Hubble Space Telescope observations of the nearby (3.22 pc), K2 V star epsilon Eridani have been combined with ground-based astrometric and radial velocity data to determine the mass of its known companion. We model the astrometric and radial velocity measurements simultaneously to obtain the parallax, proper motion, perturbation period, perturbation inclination, and perturbation size. Because of the long period of the companion, \eps b, we extend our astrometric coverage to a total of 14.94 years (including the three year span of the \HST data) by including lower-precision ground-based astrometry from the Allegheny Multichannel Astrometric Photometer. Radial velocities now span 1980.8 -- 2006.3. We obtain a perturbation period, P = 6.85 +/- 0.03 yr, semi-major axis, alpha =1.88 +/- 0.20 mas, and inclination i = 30.1 +/- 3.8 degrees. This inclination is consistent with a previously measured dust disk inclination, suggesting coplanarity. Assuming a primary mass M_* = 0.83 M_{\sun}, we obtain a companion mass M = 1.55 +/- 0.24 M_{Jup}. Given the relatively young age of epsilon Eri (~800 Myr), this accurate exoplanet mass and orbit can usefully inform future direct imaging attempts. We predict the next periastron at 2007.3 with a total separation, rho = 0.3 arcsec at position angle, p.a. = -27 degrees. Orbit orientation and geometry dictate that epsilon Eri b will appear brightest in reflected light very nearly at periastron. Radial velocities spanning over 25 years indicate an acceleration consistent with a Jupiter-mass object with a period in excess of 50 years, possibly responsible for one feature of the dust morphology, the inner cavity

    How Observations of Circumstellar Disk Asymmetries Can Reveal Hidden Planets: Pericenter Glow and its Application to the HR 4796 Disk

    Get PDF
    Recent images of the disks of dust around the young stars HR 4796A and Fomalhaut show, in each case, a double-lobed feature that may be asymmetric (one lobe may be brighter than the other). A symmetric double-lobed structure is that expected from a disk of dust with a central hole that is observed nearly edge-on (i.e., close to the plane of the disk). This paper shows how the gravitational influence of a second body in the system with an eccentric orbit would cause a brightness asymmetry in such a disk by imposing a "forced eccentricity" on the orbits of the constituent dust particles, thus shifting the center of symmetry of the disk away from the star and causing the dust near the forced pericenter of the perturbed disk to glow. Dynamic modeling of the HR 4796 disk shows that its 5% brightness asymmetry could be the result of a forced eccentricity as small as 0.02 imposed on the disk by either the binary companion HR 4796B, or by an unseen planet close to the inner edge of the disk. Since it is likely that a forced eccentricity of 0.01 or higher would be imposed on a disk in a system in which there are planets, but no binary companion, the corresponding asymmetry in the disk's structure could serve as a sensitive indicator of these planets that might otherwise remain undetected.Comment: 61 pages, 10 figures, accepted for publication in the Astrophysical Journal (scheduled for January 10, 2000

    Which Fishers are Satisfied in the Caribbean? A Comparative Analysis of Job Satisfaction Among Caribbean Lobster Fishers

    Get PDF
    Lobster fishing (targeting the spiny lobster Panulirus argus) is an important economic activity throughout the Wider Caribbean Region both as a source of income and employment for the local population as well as foreign exchange for national governments. Due to the high unit prices of the product, international lobster trade provides a way to improve the livelihoods of fisheries-dependent populations. The specie harvested is identical throughout the region and end market prices are roughly similar. In this paper we wish to investigate to which extent lobster fishers’ job satisfaction differs in three countries in the Caribbean and how these differences can be explained by looking at the national governance arrangements

    Astrometric Methods and Instrumentation to Identify and Characterize Extrasolar Planets: A Review

    Full text link
    I present a review of astrometric techniques and instrumentation utilized to search for, detect, and characterize extra-solar planets. First, I briefly summarize the properties of the present-day sample of extrasolar planets, in connection with predictions from theoretical models of planet formation and evolution. Next, the generic approach to planet detection with astrometry is described, with significant discussion of a variety of technical, statistical, and astrophysical issues to be faced by future ground-based as well as space-borne efforts in order to achieve the required degree of measurement precision. After a brief summary of past and present efforts to detect planets via milli-arcsecond astrometry, I then discuss the planet-finding capabilities of future astrometric observatories aiming at micro-arcsecond precision. Lastly, I outline a number experiments that can be conducted by means of high-precision astrometry during the next decade, to illustrate its potential for important contributions to planetary science, in comparison with other indirect and direct methods for the detection and characterization of planetary systems.Comment: 61 pages, 8 figures, PASP, accepted (October 2005 issue

    Theoretical Spectra and Atmospheres of Extrasolar Giant Planets

    Full text link
    We present a comprehensive theory of the spectra and atmospheres of irradiated extrasolar giant planets. We explore the dependences on stellar type, orbital distance, cloud characteristics, planet mass, and surface gravity. Phase-averaged spectra for specific known extrasolar giant planets that span a wide range of the relevant parameters are calculated, plotted, and discussed. The connection between atmospheric composition and emergent spectrum is explored in detail. Furthermore, we calculate the effect of stellar insolation on brown dwarfs. We review a variety of representative observational techniques and programs for their potential for direct detection, in light of our theoretical expectations, and we calculate planet-to-star flux ratios as a function of wavelength. Our results suggest which spectral features are most diagnostic of giant planet atmospheres and reveal the best bands in which to image planets of whatever physical or orbital characteristics.Comment: 47 pages, plus 36 postscript figures; with minor revisions, accepted to the Astrophysical Journal, May 10, 2003 issu

    MOST discovers a multimode delta Scuti star in a triple system: HD 61199

    Full text link
    A field star, HD 61199 (V ~ 8), simultaneously observed with Procyon by the MOST (Microvariability & Oscillations of STars) satellite in continuous runs of 34, 17, and 34 days in 2004, 2005, and 2007, was found to pulsate in 11 frequencies in the delta Scuti range with amplitudes from 1.7 down to 0.09 mmag. The photometry also showed variations with a period of about four days. To investigate the nature of the longer period, 45 days of time-resolved spectroscopy was obtained at the Thueringer Landessternwarte Tautenburg in 2004. The radial velocity measurements indicate that HD 61199 is a triple system. A delta Scuti pulsator with a rich eigenspectrum in a multiple system is promising for asteroseismology. Our objectives were to identify which of the stars in the system is the delta Scuti variable and to obtain the orbital elements of the system and the fundamental parameters of the individual components, which are constrained by the pulsation frequencies of the delta Scuti star. Classical Fourier techniques and least-squares multi-sinusoidal fits were applied to the MOST photometry to identify the pulsation frequencies. The groundbased spectroscopy was analysed with least-squares-deconvolution (LSD) techniques, and the orbital elements derived with the KOREL and ORBITX routines. Asteroseismic models were also generated. The photometric and spectroscopic data are compatible with a triple system consisting of a close binary with an orbital period of 3.57 days and a delta Scuti companion (HD 61199,A) as the most luminous component. The delta Scuti star is a rapid rotator with about vsin i = 130 km/s and an upper mass limit of about 2.1 Msun. For the close binary components, we find they are of nearly equal mass, with lower mass limits of about 0.7 Msun.Comment: 11 pages, 14 figures, accepted by A&

    Hubble Space Telescope Spectroscopy of the Balmer lines in Sirius B

    Full text link
    Sirius B is the nearest and brightest of all white dwarfs, but it is very difficult to observe at visible wavelengths due to the overwhelming scattered light contribution from Sirius A. However, from space we can take advantage of the superb spatial resolution of the Hubble Space Telescope to resolve the A and B components. Since the closest approach in 1993, the separation between the two stars has become increasingly favourable and we have recently been able to obtain a spectrum of the complete Balmer line series for Sirius B using HST?s Space Telescope Imaging Spectrograph (STIS). The quality of the STIS spectra greatly exceed that of previous ground-based spectra, and can be used to provide an important determination of the stellar temperature (Teff = 25193K) and gravity (log g = 8.556). In addition we have obtained a new, more accurate, gravitational red-shift of 80.42 +/- 4.83 km s-1 for Sirius B. Combining these results with the photometric data and the Hipparcos parallax we obtain new determinations of the stellar mass for comparison with the theoretical mass-radius relation. However, there are some disparities between the results obtained independently from log g and the gravitational redshift which may arise from flux losses in the narrow 50x0.2arcsec slit. Combining our measurements of Teff and log g with the Wood (1995) evolutionary mass-radius relation we get a best estimate for the white dwarf mass of 0.978 M. Within the overall uncertainties, this is in agreement with a mass of 1.02 M obtained by matching our new gravitational red-shift to the theoretical M/R relation.Comment: 11 pages, 6 figures, accepted for publication in the Monthly Notices of the Royal Astronomical Societ

    Structure and Evolution of Nearby Stars with Planets. I. Short-Period Systems

    Full text link
    Using the Yale stellar evolution code, we have calculated theoretical models for nearby stars with planetary-mass companions in short-period nearly circular orbits: 51 Pegasi, Tau Bootis, Upsilon Andromedae, Rho Cancri, and Rho Coronae Borealis. We present tables listing key stellar parameters such as mass, radius, age, and size of the convective envelope as a function of the observable parameters (luminosity, effective temperature, and metallicity), as well as the unknown helium fraction. For each star we construct best models based on recently published spectroscopic data and the present understanding of galactic chemical evolution. We discuss our results in the context of planet formation theory, and, in particular, tidal dissipation effects and stellar metallicity enhancements.Comment: 48 pages including 13 tables and 5 figures, to appear in Ap

    Validating Expert Systems: A Demonstration Using Personal Choice Expert, a Flexible Employee Benefit System

    Get PDF
    A method for validating expert systems, based on validation approaches from psychology and Turing\u27s “imitation game,” is demonstrated using a flexible employee benefits expert system. Psychometric validation has three aspects: the extent to which the system and expert decisions agree (criterionrelated validity), the inputs and processes used by experts compared to the system (content validity), and differences between expert and novice decisions (construct validity). If these criteria are satisfied, then the system is indistinguishable from experts for its domain and satisfies the Turing Test. Personal Choice Expert (PCE) was designed to help employees of a Fortune 500 firm choose benefits in their flexible benefits system. Its recommendations do not significantly differ from those given by independent experts. Hence, if the system-independent expert agreement (criterion-related validity) were the only standard, PCE could be considered valid. However, construct analysis suggests that re-engineering may be required. High intra-expert agreement exists only for some benefit recommendations (e.g., dental care and long-term disability) and not for others (e.g., short-term disability, accidental death and dismemberment, and life insurance). Insights offered by these methods are illustrated and examined
    corecore