2,646 research outputs found

    Seeking the Loop Quantum Gravity Barbero-Immirzi Parameter and Field in 4D, N\cal N = 1 Supergravity

    Full text link
    We embed the Loop Quantum Gravity Barbero-Immirzi parameter and field within an action describing 4D, N\cal N = 1 supergravity and thus within a Low Energy Effective Action of Superstring/M-Theory. We use the fully gauge-covariant description of supergravity in (curved) superspace. The gravitational constant is replaced with the vacuum expectation value of a scalar field, which in local supersymmetry is promoted to a complex, covariantly chiral scalar superfield. The imaginary part of this superfield couples to a supersymmetric Holst term. The Holst term also serves as a starting point in the Loop Quantum Gravity action. This suggest the possibility of a relation between Loop Quantum Gravity and supersymmetric string theory, where the Barbero-Immirzi parameter and field of the former play the role of the supersymmetric axion in the latter. Adding matter fermions in Loop Quantum Gravity may require the extension of the Holst action through the Nieh-Yan topological invariant, while in pure, matter-free supergravity their supersymmetric extensions are the same. We show that, when the Barbero-Immirzi parameter is promoted to a field in the context of 4D supergravity, it is equivalent to adding a dynamical complex chiral (dilaton-axion) superfield with a non-trivial kinetic term (or K\"ahler potential), coupled to supergravity.Comment: 20 pages, 1 figure. Replaced with accepted version in Phys. Rev.

    New massive supergravity multiplets

    Get PDF
    We present new off-shell formulations for the massive superspin-3/2 multiplet. In the massless limit, they reduce respectively to the old minimal (n=-1/3) and non-minimal (n1/3,0n\neq -1/3, 0) linearized formulations for 4D N=1 supergravity. Duality transformations, which relate the models constructed, are derived.Comment: 18 pages, LaTeX; v2: minor changes, references adde

    Unimodular cosmology and the weight of energy

    Get PDF
    Some models are presented in which the strength of the gravitational coupling of the potential energy relative to the same coupling for the kinetic energy is, in a precise sense, adjustable. The gauge symmetry of these models consists of those coordinate changes with unit jacobian.Comment: LaTeX, 23 pages, conclusions expanded. Two paragraphs and a new reference adde

    Embedding (R+R^2)-Inflation into Supergravity

    Full text link
    We find the natural embedding of the (R+R^2)-inflationary model into the recently constructed N=1 F(\cal R)-supergravity. It gives a simple and viable realization of chaotic inflation in supergravity. The only requirement for a slow-roll inflation is the existence of the (\cal R)^3-term with an anomalously large coefficient in Taylor expansion of the F(\cal R) function, where \cal R is the covariantly-chiral scalar supercurvature superfield.Comment: 4 pages, revtex, no figures (very minor additions, a reference added

    (4,4) superfield supergravity

    Full text link
    We present the N=4 superspace constraints for the two-dimensional (2d) off-shell (4,4) supergravity with the superfield strengths expressed in terms of a (4,4) twisted (scalar) multiplet TM-I, as well as the corresponding component results, in a form suitable for applications. The constraints are shown to be invariant under the N=4 super-Weyl transformations, whose N=4 superfield parameters form another twisted (scalar) multiplet TM-II. To solve the constraints, we propose the Ansatz which makes the N=4 superconformal flatness of the N=4 supergravity curved superspace manifest. The locally (4,4) supersymmetric TM-I matter couplings, with the potential terms resulting from spontaneous supersymmetry breaking, are constructed. We also find the full (4,4) superconformally invariant (improved) TM-II matter action. The latter can be extended to the (4,4) locally supersymmetric Liouville action which is suitable for describing (4,4) supersymmetric non-critical strings.Comment: 32 pages, LaTeX, revised version (one reference added, and one Appendix is reduced

    No N=4 Strings on Wolf Spaces

    Get PDF
    We generalize the standard N=2N=2 supersymmetric Kazama-Suzuki coset construction to the N=4N=4 case by requiring the {\it non-linear} (Goddard-Schwimmer) N=4 N=4~ quasi-superconformal algebra to be realized on cosets. The constraints that we find allow very simple geometrical interpretation and have the Wolf spaces as their natural solutions. Our results obtained by using components-level superconformal field theory methods are fully consistent with standard results about N=4N=4 supersymmetric two-dimensional non-linear sigma-models and N=4N=4 WZNW models on Wolf spaces. We construct the actions for the latter and express the quaternionic structure, appearing in the N=4N=4 coset solution, in terms of the symplectic structure associated with the underlying Freudenthal triple system. Next, we gauge the N=4 N=4~ QSCA and build a quantum BRST charge for the N=4N=4 string propagating on a Wolf space. Surprisingly, the BRST charge nilpotency conditions rule out the non-trivial Wolf spaces as consistent string backgrounds.Comment: 31 pages, LaTeX, special macros are include

    Ectoplasm & Superspace Integration Measure for 2D Supergravity with Four Spinorial Supercurrents

    Full text link
    Building on a previous derivation of the local chiral projector for a two dimensional superspace with eight real supercharges, we provide the complete density projection formula required for locally supersymmetrical theories in this context. The derivation of this result is shown to be very efficient using techniques based on the Ectoplasmic construction of local measures in superspace.Comment: 18 pages, LaTeX; V2: minor changes, typos corrected, references added; V3: version to appear in J. Phys. A: Math. Theor., some comments and references added to address a referee reques

    Lithologic Influences on Groundwater Recharge through Incised Glacial Till from Profile to Regional Scales: Evidence from Glaciated Eastern Nebraska

    Get PDF
    [1] Variability in sediment hydraulic properties associated with landscape depositional and erosional features can influence groundwater recharge processes by affecting soil-water storage and transmission. This study considers recharge to aquifers underlying river-incised glaciated terrain where the distribution of clay-rich till is largely intact in upland locations but has been removed by alluvial erosion in stream valleys. In a stream-dissected glacial region in eastern Nebraska (Great Plains region of the United States), recharge estimates were developed for nested profile, aquifer, and regional scales using unsaturated zone profile measurements (matric potentials, Cl− and 3H), groundwater tracers (CFC-12 and SF6), and a remote sensing-assisted water balance model. Results show a consistent influence of till lithology on recharge rates across nested spatial scales despite substantial uncertainty in all recharge estimation methods, suggesting that minimal diffuse recharge occurs through upland glacial till lithology whereas diffuse recharge occurs in river valleys where till is locally absent. Diffuse recharge is estimated to account for a maximum of 61% of total recharge based on comparison of diffuse recharge estimated from the unsaturated zone (0–43 mm yr−1) and total recharge estimated from groundwater tracers (median 58 mm yr−1) and water balance modeling (median 56 mm yr−1). The results underscore the importance of lithologic controls on the distributions of both recharge rates and mechanisms

    Medication safety incidents in paediatric oncology after electronic medication management system implementation

    Get PDF
    Objective: To explore medication safety issues related to use of an electronic medication management system (EMM) in paediatric oncology practice, through the analysis of patient safety incident reports. Methods: We analysed 827 voluntarily reported incidents relating to oncology patients that occurred over an 18‐month period immediately following implementation of an EMM in a paediatric hospital in Australia. We identified medication‐related and EMM‐related incidents and carried out a content analysis to identify patterns. Results: We found ~79% (n = 651) of incidents were medication‐related and, of these, ~45% (n = 294) were EMM‐related. Medication‐related incidents included issues with: prescribing; dispensing; administration; patient transfers; missing chemotherapy protocols and information on current stage of patient treatment; coordination of chemotherapy administration; handling or storing medications; children or families handling medications. EMM‐related incidents were classified into four groups: technical issues, issues with the user experience, unanticipated problems in EMM workflow, and missing safety features. Conclusions: Incidents reflected difficulties with managing therapies rich in interdependencies. EMM, and especially its ‘automaticity’, contributed to these incidents. As EMM impacts on safety in such high‐risk settings, it is essential that users are aware of and attend to EMM automatic behaviours and are equipped to troubleshoot them

    Gwaredu BVD — bovine viral diarrhoea eradication in Wales

    Get PDF
    corecore