21 research outputs found

    Quantitative proteomic profiling of the rat substantia nigra places glial fibrillary acidic protein at the hub of proteins dysregulated during aging : implications for idiopathic Parkinson’s disease

    Get PDF
    This work was made possible by generous funding from the Keele University ACORN scheme and Keele University School of Medicine.There is a strong correlation between aging and onset of idiopathic Parkinson's disease, but little is known about whether cellular changes occur during normal aging that may explain this association. Here, proteomic and bioinformatic analysis was conducted on the substantia nigra (SN) of rats at four stages of life to identify and quantify protein changes throughout aging. This analysis revealed that proteins associated with cell adhesion, protein aggregation and oxidation‐reduction are dysregulated as early as middle age in rats. Glial fibrillary acidic protein (GFAP) was identified as a network hub connecting the greatest number of proteins altered during aging. Furthermore, the isoform of GFAP expressed in the SN varied throughout life. However, the expression levels of the rate‐limiting enzyme for dopamine production, tyrosine hydroxylase (TH), were maintained even in the oldest animals, despite a reduction in the number of dopamine neurons in the SN pars compact(SNc) as aging progressed. This age‐related increase in TH expression per neuron would likely to increase the vulnerability of neurons, since increased dopamine production would be an additional source of oxidative stress. This, in turn, would place a high demand on support systems from local astrocytes, which themselves show protein changes that could affect their functionality. Taken together, this study highlights key processes that are altered with age in the rat SN, each of which converges upon GFAP. These findings offer insight into the relationship between aging and increased challenges to neuronal viability, and indicate an important role for glial cells in the aging process.Publisher PDFPeer reviewe

    The rat striatum responds to nigro-striatal degeneration via the increased expression of proteins associated with growth and regeneration of neuronal circuitry

    Get PDF
    BACKGROUND: Idiopathic Parkinson's disease is marked by degeneration of dopamine neurons projecting from the substantia nigra to the striatum. Although proteins expressed by the target striatum can positively affect the viability and growth of dopaminergic neurons, very little is known about the molecular response of the striatum as nigro-striatal denervation progresses. Here, iTRAQ labelling and MALDI TOF/TOF mass spectrometry have been used to quantitatively compare the striatal proteome of rats before, during, and after 6-OHDA induced dopamine denervation. RESULTS: iTRAQ analysis revealed the differential expression of 50 proteins at 3 days, 26 proteins at 7 days, and 34 proteins at 14 days post-lesioning, compared to the unlesioned striatum. While the denervated striatum showed a reduced expression of proteins associated with the loss of dopaminergic input (e.g., TH and DARPP-32), there was an increased expression of proteins associated with regeneration and growth of neurites (e.g., GFAP). In particular, the expression of guanine deaminase (GDA, cypin) - a protein known to be involved in dendritic branching - was significantly increased in the striatum at 3, 7 and 14 days post-lesioning (a finding verified by immunohistochemistry). CONCLUSIONS: Together, these findings provide evidence to suggest that the response of the normal mammalian striatum to nigro-striatal denervation includes the increased expression of proteins that may have the capacity to facilitate repair and growth of neuronal circuitry

    Re-examining the ontogeny of substantia nigra dopamine neurons

    No full text
    Recently, the need to detail the precise ontogeny of nigrostriatal dopamine neurons has grown significantly. It is now thought that the gestational day on which the majority of these neurons are born is important not only for maximizing the yield of primary cells for transplantation but also for extracting suitable dopamine neural precursors (as stem cells) for expansion in vitro. Historically, peak ontogeny of substantia nigra pars compacta (SNc) dopamine neurons in the rat has been considered to occur around embryonic day (E)14. However, such a concept is at odds with recent studies that reveal not only that substantial numbers of tyrosine hydroxylase-immunopositive cells reside in the ventral mesencephalic region of rats at E14 but that many of these cells have matured extensive axonal projections to the ventral forebrain. Here, then, the ontogeny of SNc neurons in rats commonly used as a source of donor tissue for experimental cell transplantation in animal models of Parkinson's disease has been re-examined. Using a combination of bromodeoxyuridine (BrdU) administration at E11, E12, E13 or E14 with immunocytochemical stainings for both BrdU and tyrosine hydroxylase after 4 weeks of postnatal development, this characterization reveals that the vast majority (perhaps 80%) of SNc dopamine neurons are probably born on E12 in Sprague-Dawley rats. Such findings are important in refining the use of embryonic tissues for primary cell transplantation and may provide more precise timing for identifying the cellular and molecular events that drive neural stem cells toward a dopaminergic phenotype during development

    Spatially and temporally restricted chemoattractive and chemorepulsive cues direct the formation of the nigro-striatal circuit

    No full text
    Identifying cellular and molecular mechanisms that direct the formation of circuits during development is thought to be the key to reconstructing circuitry lost in adulthood to neurodegenerative disorders or common traumatic injuries. Here we have tested whether brain regions situated in and around the developing nigro-striatal pathway have particular chemoattractive or chemorepulsive effects on mesencephalic dopamine axons, and whether these effects are temporally restricted. Mesencephalic explants from embryonic day (E)12 rats were either cultured alone or with coexplants from the embryonic, postnatal or adult medial forebrain bundle region (MFB), striatum, cortex, brain stem or thalamus. Statistical analysis of axon growth responses revealed a potent chemoattraction to the early embryonic MFB (i.e. E12–15) that diminished (temporally) in concert with the emergence of chemoattraction to the striatum in the late embryonic period (i.e. E19+). Repulsive responses by dopaminergic axons were obvious in cocultures with embryonic brain stem and cortex, however, there was no effect by the thalamus. Such results suggest that the nigro-striatal circuit is formed via spatially and temporally distributed chemoattractive and chemorepulsive elements that: (i) orientate the circuit in a rostral direction (via brain stem repulsion); (ii) initiate outgrowth (via MFB attraction); (iii) prevent growth beyond the target region (via cortical repulsion); and (iv) facilitate target innervation (via striatal chemoattraction). Subsequent studies will focus on identifying genes responsible for these events so that their products may be exploited to increase the integration of neuronal transplants to the mature brain, or provide a means to (re)establish the nigro-striatal circuit in vivo

    Dissociated cells and piece of VM tissue improve rotation bias in unilaterally 6-OHDA lesioned rats.

    No full text
    <p>Net ipsilateral rotation scores of animals pre-transplantation (Pre), and 4 and 6 weeks after transplantation of dissociated cells from, or an intact piece of, half an E13 VM versus controls (lesion alone). Data are shown as group mean rotations of control (diamonds), cell transplanted (squares), and whole tissue transplanted (triangle) animals, with bars above and below each data point indicating the ± SEM. Though both groups of animals receiving either transplants of dissociated VM cells (squares) or intact pieces of VM tissue (triangles) recovered some rotational symmetry, animals receiving transplants of pieces of VM tissue continued to improve after 4 weeks post-transplantation to nearly zero rotations per minute by 6 weeks post-transplantation.</p

    Dissociated cell and whole tissue transplants contain TH+ cells projecting neuritis into the host striatum.

    No full text
    <p>Tyrosine hydroxylase (TH) staining of coronal sections through transplants of dissociated cells (A–C), or intact pieces of tissue (D–F) from one half of an E13 VM. (A and D) Transplants (arrowheads) were placed centrally in the 6-OHDA denervated striatum of lesion rats. (B and E) Numerous TH+ cell bodies could be seen situated within grafts of either dissociated cells (B) and whole tissue (E), with a halo (arrow heads) of diffuse TH+ cell fibers distributed throughout much of the surrounding host striatum. (C and F) High power images show varied TH+ cell profiles (arrows) throughout both types of grafts, and large, tapering TH+ processes innervating the surrounding host parenchyma (arrow heads). Scale bar for D shown in A, for E shown in B, and for F shown in C.</p
    corecore