653 research outputs found

    Direct spatial-temporal discrimination of modes in a photonic lightwave circuit using photon scanning tunnelling microscopy

    No full text
    Multi-mode photonic lightwave circuits (PLCs) provide new avenues for extending the performance of single mode systems. As an example, they can potentially provide increased bandwidth by multiplexing information into different waveguide modes[1]. For practical applications of multi-mode PLCs to be developed, a measurement technique is required to investigate detailed mode profiles and propagation constants in complex circuits. Photon scanning tunnelling microscopy (PSTM) provides a means of experimentally tracking the femtosecond inter-modal delays observed in PLCs with the ability to discriminate modes by their spatial profiles inside the waveguide

    Planar micromachined glass cantilevers utilising integrated Bragg Fabry-Perot cavities

    No full text
    Here we demonstrate a glass cantilever based on a unique micromachining and etching approach, combined with UV written Bragg gratings. We shall also discuss the increase in sensitivity by using two Bragg gratings to form Fabry-PĂ©rot cavity. Cantilevers are in ultra sensitive force sensors used in applications such as Atomic Force Microscopy, mass sensing and acoustic transducers

    Flat-top temperature tuning response in periodically-poled nonlinear crystals

    No full text
    Second harmonic generation via periodically-poled nonlinear materials offers an efficient means of generating high-quality visible light that would be otherwise unattainable with traditional laser sources. While this technology has the potential for implementation in many mass-industrial applications, temperature stability requirements of 0.1 deg.C can make packaging with a pump source problematic. Using our high fidelity poling technique we have achieved precise placement of poled domains in Lithium Niobate based on the resulting mathematical models. These initial devices provide more than 4 deg.C flat-top temperature stability, albeit with a corresponding loss in operational efficiency. Our aim is to implement improved designs in magnesium-doped Lithium Niobate for packaging with near-room temperature diode-based pump sources, as could be applied towards RGB TV and projector applications

    Lateral groove geometry for planar UV written evanescent devices - new flexibility new devices

    No full text
    Conventional evanescent optical devices have made use of etched windows to allow access of an optical field to a material of interest. Such devices are a route to accurate refractive index sensors and to realising modulators, however, the geometry of etching the cladding to give the fluid access to a pre-defined core waveguide mode is limiting. In this work, we present an alternative approach in which a groove is cut using a polishing saw blade to give a vertical, high optical quality trench. Optical waveguides are then UV written to allow evanescent lateral access of the mode to a fluid placed in the trench. This seemingly subtle change in geometry provides greatly increased flexibility to tailor the interaction between the optical mode and the surrounding material, by, for example, changing the mode size and the allowing couplers or tapers to be used

    Seeking the Loop Quantum Gravity Barbero-Immirzi Parameter and Field in 4D, N\cal N = 1 Supergravity

    Full text link
    We embed the Loop Quantum Gravity Barbero-Immirzi parameter and field within an action describing 4D, N\cal N = 1 supergravity and thus within a Low Energy Effective Action of Superstring/M-Theory. We use the fully gauge-covariant description of supergravity in (curved) superspace. The gravitational constant is replaced with the vacuum expectation value of a scalar field, which in local supersymmetry is promoted to a complex, covariantly chiral scalar superfield. The imaginary part of this superfield couples to a supersymmetric Holst term. The Holst term also serves as a starting point in the Loop Quantum Gravity action. This suggest the possibility of a relation between Loop Quantum Gravity and supersymmetric string theory, where the Barbero-Immirzi parameter and field of the former play the role of the supersymmetric axion in the latter. Adding matter fermions in Loop Quantum Gravity may require the extension of the Holst action through the Nieh-Yan topological invariant, while in pure, matter-free supergravity their supersymmetric extensions are the same. We show that, when the Barbero-Immirzi parameter is promoted to a field in the context of 4D supergravity, it is equivalent to adding a dynamical complex chiral (dilaton-axion) superfield with a non-trivial kinetic term (or K\"ahler potential), coupled to supergravity.Comment: 20 pages, 1 figure. Replaced with accepted version in Phys. Rev.

    New geometry for planar UV written refractive index sensors

    No full text
    We shall present some of our recent results from our work on UV written planar waveguide refractive index sensors. Refractive index of an analyte is measured through the perturbation of an optical mode, interrogation of the modal index is achieved via the reflected spectra from a Bragg grating defined in the same process as the channel waveguide. Here we introduce a new geometry which embraces the benefits of planar technology to realise new integrated devices. The geometry allows several different sensors to be defined on the same substrate each offering complementary information. Such information may include index as a function of penetration depth for surface binding analytes, interrogation wavelength for dispersion analysis, enhanced sensitivity in specific index ranges and temperature compensation. We shall also outline the inherent fabrication advantages and device feature benefits, including a reduction in return loss, spectral artefacts and a suggested reduction in stress induced birefringence. The silica sensing surface opposed to gold used in SPR devices opens new avenues to exploit surface binding. With a marked reduction in complexity and cost these devices may have significant impact in future sensor markets

    The Real Anatomy of Complex Linear Superfields

    Full text link
    Recent work on classicication of off-shell representations of N-extended worldline supersymmetry without central charges has uncovered an unexpectedly vast number--trillions of even just (chromo)topology types--of so called adinkraic supermultiplets. Herein, we show by explicit analysis that a long-known but rarely used representation, the complex linear supermultiplet, is not adinkraic, cannot be decomposed locally, but may be reduced by means of a Wess-Zumino type gauge. This then indicates that the already unexpectedly vast number of adinkraic off-shell supersymmetry representations is but the proverbial tip of the iceberg.Comment: 21 pages, 4 figure

    100 GHz electrically tunable planar Bragg grating via nematic liquid crystal overlay towards reconfigurable WDM networks

    No full text
    Novel liquid crystal-based integrated optical devices with >140GHz electrical tuning are presented for application towards reconfigurable wavelength division multiplexing (WDM) networks. Initial results with Bragg wavelength tuning covering five 25GHz WDM channel spacing have been achieved with 170V (peak-to-peak) sinusoidal voltages applied across electro-patterned ITO-covered glass electrodes placed 60”m apart. These prototype devices were fabricated using direct UV grating writing, with an evanescent field coupling into a liquid crystal overlay through an etched window. Electrically controlled liquid crystal birefringence modifies the waveguide effective index, resulting in Bragg wavelength shift. Merck 18523 nematic liquid crystals are used, exhibiting compatible refractive index values to that of silica (no=1.44, ne=1.49 at lambda=1550nm). Homeotropic alignment of the liquid crystal is provided by application of a surfactant layer.The inherent refractive index sensitivity of our etched direct-UV-written structures allows observation of previously unreported liquid crystal surface-behaviour, such as multi-threshold points during variation of the applied field. Continued optimisation based on evanescent field penetration, electrode layout, and surface interaction will allow implementation towards a variety of novel liquid crystal applications and devices. For example, a cascaded architecture of these integrated liquid crystal devices operating at different Bragg wavelengths would pave the way towards true colorless add/drop modules for dense optical networks

    Demonstrating low Raman background in UV-written SiO2 waveguides

    Get PDF
    Raman spectroscopy can give a chemical ’fingerprint’ from both inorganic and organic samples, and has become a viable method of measuring the chemical composition of single biological particles. In parallel, integration of waveguides and microfluidics allows for the creation of miniaturized optical sensors in lab-on-a-chip devices. The prospect of combining integrated optics and Raman spectroscopy for Raman-on-chip offers new opportunities for optical sensing. A major limitation for this is the Raman background of the waveguide. This background is very low for optical fibers but remains a challenge for planar waveguides. In this work, we demonstrate that UV-written SiO2 waveguides, designed to mimic the performance of optical fibers, offer a significantly lower background than competing waveguide materials such as Si3N4. The Raman scattering in the waveguides is measured in absolute units and compared to that of optical fibers and Si3N4 waveguides. A limited study of the sensitivity of the Raman scattering to changes in pump wavelength and in waveguide design is also conducted. It is revealed that UV-written SiO2 waveguides offer a Raman background lower than −107.4 dB relative to a 785 nm pump and −106.5 dB relative to a 660 nm pump. Furthermore, the UV-written SiO2 waveguide demonstrates a 15 dB lower Raman background than a Si3N4 waveguide and is only 8.7 − 10.3 dB higher than optical fibers. Comparison with a polystyrene bead (in free space, diameter 7 ”m) reveal an achievable peak SNR of 10.4 dB, showing the potential of UV-SiO2 as a platform for a Raman-on-chip device capable of measuring single particles

    Direct grating writing: single-step Bragg grating and waveguide fabrication for telecommunications and sensing applications

    No full text
    Direct Grating Writing (DGW) has been developed over the past decade as a means of rapidly prototyping waveguides with integrated Bragg grating structures in silica-on-silicon substrates [1]. The technique allows complicated waveguide structures and Bragg grating arrays to be fabricated and characterised in house
    • 

    corecore