6 research outputs found

    Root Border-Like Cells of Arabidopsis. Microscopical Characterization and Role in the Interaction with Rhizobacteria

    No full text
    Plant roots of many species produce thousands of cells that are released daily into the rhizosphere. These cells are commonly termed border cells because of their major role in constituting a biotic boundary layer between the root surface and the soil. In this study, we investigated the occurrence and ultrastructure of such cells in Arabidopsis (Arabidopsis thaliana) using light and electron microscopy coupled to high-pressure freezing. The secretion of cell wall molecules including pectic polysaccharides and arabinogalactan-proteins (AGPs) was examined also using immunofluorescence microscopy and a set of anticarbohydrate antibodies. We show that root tips of Arabidopsis seedlings released cell layers in an organized pattern that differs from the rather randomly dispersed release observed in other plant species studied to date. Therefore, we termed such cells border-like cells (BLC). Electron microscopical results revealed that BLC are rich in mitochondria, Golgi stacks, and Golgi-derived vesicles, suggesting that these cells are actively engaged in secretion of materials to their cell walls. Immunocytochemical data demonstrated that pectins as well as AGPs are among secreted material as revealed by the high level of expression of AGP-epitopes. In particular, the JIM13-AGP epitope was found exclusively associated with BLC and peripheral cells in the root cap region. In addition, we investigated the function of BLC and root cap cell AGPs in the interaction with rhizobacteria using AGP-disrupting agents and a strain of Rhizobium sp. expressing a green fluorescent protein. Our findings demonstrate that alteration of AGPs significantly inhibits the attachment of the bacteria to the surface of BLC and root tip

    Development, formulation, and cellular mechanism of a lipophilic copper chelator for the treatment of Wilson's disease

    No full text
    International audienceCopper homeostasis is finely regulated in human to avoid any detrimental impact of free intracellular copper ions. Upon copper accumulation, biliary excretion is triggered in liver thanks to trafficking of the ATP7B copper transporter to bile canaliculi. However, in Wilson's disease this protein is mutated leading to copper accumulation. Current therapy uses Cu chelators acting extracellularly and requiring a life-long treatment with side effects. Herein, a new Cu(I) pro-chelator was encapsulated in long-term stable nanostructured lipid carriers. Cellular assays revealed that the pro-chelator protects hepatocytes against Cu-induced cell death. Besides, the cellular stresses induced by moderate copper concentrations, including protein unfolding, are counteracted by the pro-chelator. These data showed the pro-chelator efficiency to deliver intracellularly an active chelator that copes with copper stress and surpasses current and under development chelators. Although its biological activity is more mitigated, the pro-chelator nanolipid formulation led to promising results. This innovative approach is of outmost importance in the quest of better treatments for Wilson's disease

    Lectin recognition and hepatocyte endocytosis of GalNAc-decorated nanostructured lipid carriers

    No full text
    International audienceLiver is the main organ for metabolism but is also subject to various pathologies, from viral, genetic, cancer or metabolic origin. There is thus a crucial need to develop efficient liver-targeted drug delivery strategies. Asialoglycoprotein receptor (ASGPR) is a C-type lectin expressed in the hepatocyte plasma membrane that efficiently endocytoses glycoproteins exposing galactose (Gal) or N-acetylgalactosamine (GalNAc). Its targeting has been successfully used to drive the uptake of small molecules decorated with three or four GalNAc, thanks to an optimisation of their spatial arrangement. Herein, we assessed the biological properties of highly stable nanostructured lipid carriers (NLC) made of FDA-approved ingredients and formulated with increasing amounts of GalNAc. Cellular studies showed that a high density of GalNAc was required to favour hepatocyte internalisation via the ASGPR pathway. Interaction studies using surface plasmon resonance and the macrophage galactose-lectin as GalNAc-recognising lectin confirmed the need of high GalNAc density for specific recognition of these NLC. This work is the first step for the development of efficient nanocarriers for prolonged liver delivery of active compounds

    Thiolate-Capped Silver Nanoparticles: Discerning Direct Grafting from Sulfidation at the Metal–Ligand Interface by Interrogating the Sulfur Atom

    No full text
    International audienceGrafting thiol-bearing molecules at the surface of silver nano-particles (AgNPs) is a successful strategy to tune their optical and antibacterial properties. The capping layer generated from self-assembly of the ligands at the nanoparticle surface determines the range of possible applications of the resulting material. In particular, direct grafting of the thiol heads to surface Ag(I) can occur, with various hybridizations of the S atom, sp versus sp 3. Alternatively, a passivating Ag 2 S layer can form. We make use of S K-edge X-ray absorption near edge structure (XANES) and synchrotron-based X-ray photoelectron spectroscopy (XPS) to probe the metal−ligand interface in different thiol-capped AgNPs. The use of cryogenic conditions for XAS analyses reveals a peculiar spectral signature for thiolates chemisorbed on the AgNPs surface, unambiguously distinguished from that of Ag 2 S. Ab initio simulations of XANES spectra and XPS analyses are used to predict the grafting mode, suggesting that different ligand architectures promote slightly different proportions of sp/sp 3 sites, and a dramatic variability in the stability of the nanomaterial that can evolve toward either self-assembly or dissolution of the AgNPs

    Safer-by-design biocides made of tri-thiol bridged silver nanoparticle assemblies

    No full text
    International audienceSilver nanoparticles (AgNPs) are efficient biocides increasingly used in consumer products and medical devices. Their activity is due to their capacity to release bioavailable Ag(I) ions making them long-lasting biocides but AgNPs themselves are usually easily released from the product. Besides, AgNPs are highly sensitive to various chemical environments that triggers their transformation, decreasing their activity. Altogether, widespread use of AgNPs leads to bacterial resistance and safety concerns for humans and the environment. There is thus a crucial need for improvement. Herein, a proof of concept for a novel biocide based on AgNP assemblies bridged together by a tri-thiol bioinspired ligand is presented. The final nanomaterial is stable and less sensitive to chemical environments with AgNPs completely covered by organic molecules tightly bound via their thiol functions. Therefore, these AgNP assemblies can be considered as safer-by-design and innovative biocides, since they deliver a sufficient amount of Ag(I) for biocidal activity with no release of AgNPs, which are insensitive to transformations in the nanomaterial
    corecore