60 research outputs found

    Can the ADA Protect Persons with Disabilities in Their Ability To Get to Work?

    Get PDF
    James Kimmons worked at a Charter Communications call center. He suffered cataracts in both eyes, which made it difficult to drive in the dark. Kimmons requested a modification to his work schedule, seeking permission to work earlier hours so he could commute home in the daylight. Notably, the work-schedule accommodation Kimmons sought is one that many other Americans may need, as 22.8% of all working age adults are considered accommodation-sensitive and 47% to 58% β€œof those who would actually benefit from a workplace accommodation do not receive one.” His employer granted his request for a short period of time but ultimately refused to extend the accommodation, arguing that the call center was under no obligation to change his schedule under the Americans with Disabilities Act (ADA). Kimmons filed a complaint with the Equal Opportunity Employment Commission (EEOC), which prompted the Commission to initiate litigation on his behalf. While the district court ruled in favor of Kimmons’ employer, the Court of Appeals for the Seventh Circuit recently held for Kimmons.This post was originally published on the Cardozo Journal of Equal Rights and Social Justice website on February 12, 2024. The original post can be accessed via the Archived Link button above

    No association between a candidate TCF7L2 variant and risk of breast or ovarian cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>TCF7L2 is a transcription factor involved in Wnt/Ξ²-catenin signaling which has a variant known to be associated with risk of Type 2 diabetes and, in some studies, with risk of certain cancers, including familial breast cancer. No studies of ovarian cancer have been reported to date.</p> <p>Methods</p> <p>Two clinic-based case-control studies at the Mayo Clinic were assessed including 798 breast cancer cases, 843 breast cancer controls, 391 ovarian cancer cases, and 458 ovarian cancer controls. Genotyping at <it>TCF7L2 </it>rs12255372 used a 5' endonuclease assay, and statistical analysis used logistic regression among participants as a whole and among <it>a priori</it>-defined subsets.</p> <p>Results</p> <p>No associations with risk of breast or ovarian cancer were observed (ordinal model, p = 0.62 and p = 0.75, respectively). In addition, no associations were observed among sub-groups defined by age, BMI, family history, stage, grade, histology, or tumor behavior.</p> <p>Conclusion</p> <p>Although the biology of the Wnt/Ξ²-catenin signaling pathway and prior association between rs12255372 and numerous phenotypes warranted examination of this <it>TCF7L2 </it>SNP, no compelling evidence for association with breast or ovarian cancer was observed.</p

    An integrative approach to identifying cancer chemoresistance-associated pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resistance to chemotherapy severely limits the effectiveness of chemotherapy drugs in treating cancer. Still, the mechanisms and critical pathways that contribute to chemotherapy resistance are relatively unknown. This study elucidates the chemoresistance-associated pathways retrieved from the integrated biological interaction networks and identifies signature genes relevant for chemotherapy resistance.</p> <p>Methods</p> <p>An integrated network was constructed by collecting multiple metabolic interactions from public databases and the k-shortest path algorithm was implemented to identify chemoresistant related pathways. The identified pathways were then scored using differential expression values from microarray data in chemosensitive and chemoresistant ovarian and lung cancers. Finally, another pathway database, Reactome, was used to evaluate the significance of genes within each filtered pathway based on topological characteristics.</p> <p>Results</p> <p>By this method, we discovered pathways specific to chemoresistance. Many of these pathways were consistent with or supported by known involvement in chemotherapy. Experimental results also indicated that integration of pathway structure information with gene differential expression analysis can identify dissimilar modes of gene reactions between chemosensitivity and chemoresistance. Several identified pathways can increase the development of chemotherapeutic resistance and the predicted signature genes are involved in drug resistant during chemotherapy. In particular, we observed that some genes were key factors for joining two or more metabolic pathways and passing down signals, which may be potential key targets for treatment.</p> <p>Conclusions</p> <p>This study is expected to identify targets for chemoresistant issues and highlights the interconnectivity of chemoresistant mechanisms. The experimental results not only offer insights into the mode of biological action of drug resistance but also provide information on potential key targets (new biological hypothesis) for further drug-development efforts.</p

    Mammalian Target of Rapamycin Is a Therapeutic Target for Murine Ovarian Endometrioid Adenocarcinomas with Dysregulated Wnt/Ξ²-Catenin and PTEN

    Get PDF
    Despite the fact that epithelial ovarian cancers are the leading cause of death from gynecological cancer, very little is known about the pathophysiology of the disease. Mutations in the WNT and PI3K pathways are frequently observed in the human ovarian endometrioid adenocarcinomas (OEAs). However, the role of WNT/Ξ²-catenin and PTEN/AKT signaling in the etiology and/or progression of this disease is currently unclear. In this report we show that mice with a gain-of-function mutation in Ξ²-catenin that leads to dysregulated nuclear accumulation of Ξ²-catenin expression in the ovarian surface epithelium (OSE) cells develop indolent, undifferentiated tumors with both mesenchymal and epithelial characteristics. Combining dysregulated Ξ²-catenin with homozygous deletion of PTEN in the OSE resulted in development of significantly more aggressive tumors, which was correlated with inhibition of p53 expression and cellular senescence. Induced expression of both mTOR kinase, a master regulator of proliferation, and phosphorylation of its downstream target, S6Kinase was also observed in both the indolent and aggressive mouse tumors, as well as in human OEA with nuclear Ξ²-catenin accumulation. Ectopic allotransplants of the mouse ovarian tumor cells with a gain-of-function mutation in Ξ²-catenin and PTEN deletion developed into tumors with OEA histology, the growth of which were significantly inhibited by oral rapamycin treatment. These studies demonstrate that rapamycin might be an effective therapeutic for human ovarian endometrioid patients with dysregulated Wnt/Ξ²-catenin and Pten/PI3K signaling

    Changes in Gene Expression and Cellular Architecture in an Ovarian Cancer Progression Model

    Get PDF
    BACKGROUND: Ovarian cancer is the fifth leading cause of cancer deaths among women. Early stage disease often remains undetected due the lack of symptoms and reliable biomarkers. The identification of early genetic changes could provide insights into novel signaling pathways that may be exploited for early detection and treatment. METHODOLOGY/PRINCIPAL FINDINGS: Mouse ovarian surface epithelial (MOSE) cells were used to identify stage-dependent changes in gene expression levels and signal transduction pathways by mouse whole genome microarray analyses and gene ontology. These cells have undergone spontaneous transformation in cell culture and transitioned from non-tumorigenic to intermediate and aggressive, malignant phenotypes. Significantly changed genes were overrepresented in a number of pathways, most notably the cytoskeleton functional category. Concurrent with gene expression changes, the cytoskeletal architecture became progressively disorganized, resulting in aberrant expression or subcellular distribution of key cytoskeletal regulatory proteins (focal adhesion kinase, Ξ±-actinin, and vinculin). The cytoskeletal disorganization was accompanied by altered patterns of serine and tyrosine phosphorylation as well as changed expression and subcellular localization of integral signaling intermediates APC and PKCΞ²II. CONCLUSIONS/SIGNIFICANCE: Our studies have identified genes that are aberrantly expressed during MOSE cell neoplastic progression. We show that early stage dysregulation of actin microfilaments is followed by progressive disorganization of microtubules and intermediate filaments at later stages. These stage-specific, step-wise changes provide further insights into the time and spatial sequence of events that lead to the fully transformed state since these changes are also observed in aggressive human ovarian cancer cell lines independent of their histological type. Moreover, our studies support a link between aberrant cytoskeleton organization and regulation of important downstream signaling events that may be involved in cancer progression. Thus, our MOSE-derived cell model represents a unique model for in depth mechanistic studies of ovarian cancer progression

    Cancer in Pregnancy

    No full text
    • …
    corecore