816 research outputs found

    A comparison between pulsed and CW laser annealing for solar cell applications

    Get PDF
    The application of laser processing in solar cell fabrication is considered. Specific emphasis is placed on a process developed for the fabrication of a 16.6% silicon solar cell using pulsed laser processing. Results are presented which compare pulsed laser annealing with CW laser annealing in solar cell fabrication

    Cryo-EM reconstructions of inhibitor-bound SMG1 kinase reveal an autoinhibitory state dependent on SMG8

    Get PDF
    The PI3K-related kinase (PIKK) SMG1 monitors the progression of metazoan nonsense-mediated mRNA decay (NMD) by phosphorylating the RNA helicase UPF1. Previous work has shown that the activity of SMG1 is impaired by small molecule inhibitors, is reduced by the SMG1 interactors SMG8 and SMG9, and is downregulated by the so-called SMG1 insertion domain. However, the molecular basis for this complex regulatory network has remained elusive. Here, we present cryo-electron microscopy reconstructions of human SMG1-9 and SMG1-8-9 complexes bound to either a SMG1 inhibitor or a non-hydrolyzable ATP analog at overall resolutions ranging from 2.8 to 3.6 angstrom. These structures reveal the basis with which a small molecule inhibitor preferentially targets SMG1 over other PIKKs. By comparison with our previously reported substrate-bound structure (Langer et al.,2020), we show that the SMG1 insertion domain can exert an autoinhibitory function by directly blocking the substrate-binding path as well as overall access to the SMG1 kinase active site. Together with biochemical analysis, our data indicate that SMG1 autoinhibition is stabilized by the presence of SMG8. Our results explain the specific inhibition of SMG1 by an ATP-competitive small molecule, provide insights into regulation of its kinase activity within the NMD pathway, and expand the understanding of PIKK regulatory mechanisms in general.Acknowledgements: Daniel Bollschweiler and Tillman Schäfer at the MPIB cryo-EM facility for help with EM data collection and Barbara Steigenberger and Elisabeth Weyher at MPIB biochemistry core facility for carrying out mass spectrometry

    Structure of substrate-bound SMG1-8-9 kinase complex reveals molecular basis for phosphorylation specificity

    No full text
    PI3K-related kinases (PIKKs) are large Serine/Threonine (Ser/Thr)-protein kinases central to the regulation of many fundamental cellular processes. PIKK family member SMG1 orchestrates progression of an RNA quality control pathway, termed nonsense-mediated mRNA decay (NMD), by phosphorylating the NMD factor UPF1. Phosphorylation of UPF1 occurs in its unstructured N- and C-terminal regions at Serine/Threonine-Glutamine (SQ) motifs. How SMG1 and other PIKKs specifically recognize SQ motifs has remained unclear. Here, we present a cryo-electron microscopy (cryo-EM) reconstruction of a human SMG1-8-9 kinase complex bound to a UPF1 phosphorylation site at an overall resolution of 2.9 angstrom. This structure provides the first snapshot of a human PIKK with a substrate-bound active site. Together with biochemical assays, it rationalizes how SMG1 and perhaps other PIKKs specifically phosphorylate Ser/Thr-containing motifs with a glutamine residue at position +1 and a hydrophobic residue at position -1, thus elucidating the molecular basis for phosphorylation site recognition

    A frictionless microswimmer

    Get PDF
    We investigate the self-locomotion of an elongated microswimmer by virtue of the unidirectional tangential surface treadmilling. We show that the propulsion could be almost frictionless, as the microswimmer is propelled forward with the speed of the backward surface motion, i.e. it moves throughout an almost quiescent fluid. We investigate this swimming technique using the special spheroidal coordinates and also find an explicit closed-form optimal solution for a two-dimensional treadmiler via complex-variable techniques.Comment: 6 pages, 4 figure

    Critical Behavior of Light

    Full text link
    Light is shown to exhibit critical and tricritical behavior in passive mode-locked lasers with externally injected pulses. It is a first and unique example of critical phenomena in a one-dimensional many body light-mode system. The phase diagrams consist of regimes with continuous wave, driven para-pulses, spontaneous pulses via mode condensation, and heterogeneous pulses, separated by phase transition lines which terminate with critical or tricritical points. Enhanced nongaussian fluctuations and collective dynamics are observed at the critical and tricritical points, showing a mode system analog of the critical opalescence phenomenon. The critical exponents are calculated and shown to comply with the mean field theory, which is rigorous in the light system.Comment: RevTex, 5 pages, 3 figure

    Solution of a statistical mechanics model for pulse formation in lasers

    Full text link
    We present a rigorous statistical-mechanics theory of nonlinear many mode laser systems. An important example is the passively mode-locked laser that promotes pulse operation when a saturable absorber is placed in the cavity. It was shown by Gordon and Fischer [1] that pulse formation is a first-order phase transition of spontaneous ordering of modes in an effective "thermodynamic" system, in which intracavity noise level is the effective temperature. In this paper we present a rigorous solution of a model of passive mode locking. We show that the thermodynamics depends on a single parameter, and calculate exactly the mode-locking point. We find the phase diagram and calculate statistical quantities, including the dependence of the intracavity power on the gain saturation function, and finite size corrections near the transition point. We show that the thermodynamics is independent of the gain saturation mechanism and that it is correctly reproduced by a mean field calculation. The outcome is a new solvable statistical mechanics system with an unstable self-interaction accompanied by a natural global power constraint, and an exact description of an important many mode laser system.Comment: 10 pages, 3 figures, RevTe

    MORPH: A Reference Architecture for Configuration and Behaviour Self-Adaptation

    Full text link
    An architectural approach to self-adaptive systems involves runtime change of system configuration (i.e., the system's components, their bindings and operational parameters) and behaviour update (i.e., component orchestration). Thus, dynamic reconfiguration and discrete event control theory are at the heart of architectural adaptation. Although controlling configuration and behaviour at runtime has been discussed and applied to architectural adaptation, architectures for self-adaptive systems often compound these two aspects reducing the potential for adaptability. In this paper we propose a reference architecture that allows for coordinated yet transparent and independent adaptation of system configuration and behaviour
    • …
    corecore