1,078 research outputs found

    Cannabinoid Formulations and Delivery Systems: Current and Future Options to Treat Pain

    Get PDF
    The field of Cannabis sativa L. research for medical purposes has been rapidly advancing in recent decades and a growing body of evidence suggests that phytocannabinoids are beneficial for a range of conditions. At the same time impressing development has been observed for formulations and delivery systems expanding the potential use of cannabinoids as an effective medical therapy. The objective of this review is to present the most recent results from pharmaceutical companies and research groups investigating methods to improve cannabinoid bioavailability and to clearly establish its therapeutic efficacy, dose ranges, safety and also improve the patient compliance. Particular focus is the application of cannabinoids in pain treatment, describing the principal cannabinoids employed, the most promising delivery systems for each administration routes and updating the clinical evaluations. To offer the reader a wider view, this review discusses the formulation starting from galenic preparation up to nanotechnology approaches, showing advantages, limits, requirements needed. Furthermore, the most recent clinical data and meta-analysis for cannabinoids used in different pain management are summarized, evaluating their real effectiveness, in order also to spare opioids and improve patients’ quality of life. Promising evidence for pain treatments and for other important pathologies are also reviewed as likely future directions for cannabinoids formulations

    Probing the dynamics of quasicrystal growth using synchrotron live imaging

    Get PDF
    The dynamics of quasicrystal growth remains an unsolved problem in condensed matter. By means of synchrotron live imaging, facetted growth proceeding by the tangential motion of ledges at the solid-melt interface is clearly evidenced all along the solidification of icosahedral AlPdMn quasicrystals. The effect of interface kinetics is significant so that nucleation and free growth of new facetted grains occur in the melt when the solidification rate is increased. The evolution of these grains is explained in details, which reveals the crucial role of aluminum rejection, both in the poisoning of grain growth and driving fluid flow

    Impaired GH Secretion in Patients with SHOX Deficiency and Efficacy of Recombinant Human GH Therapy.

    Get PDF
    Background/Aims: Mutations of the short stature homeobox-containing (SHOX) gene on the pseudoautosomal region of the sex chromosomes cause short stature. GH treatment has been recently proposed to improve height in short patients with SHOX deficiency. The aim of this study was to evaluate GH secretion and analyze growth and safety of recombinant human GH (rhGH) therapy in short children and adolescents with SHOX deficiency. Patients and Design: We studied 16 patients (10 females; 9.7 ± 2.9 years old; height -2.46 ± 0.82 standard deviation score, SDS) with SHOX deficiency. All subjects underwent auxological evaluations, biochemical investigations, and were treated with rhGH (0.273 ± 0.053 mg/kg/week). Results: Impaired GH secretion was present in 37.5% of the studied subjects. Comparing baseline data with those at the last visit, we found that rhGH treatment improved growth velocity SDS (from -1.03 ± 1.44 to 2.77 ± 1.95; p = 0.001), height SDS (from -2.41 ± 0.71 to -1.81 ± 0.87; p < 0.001), and IGF-1 values (from -0.57 ± 1.23 to 0.63 ± 1.63 SDS, p = 0.010) without affecting body mass index SDS. Height SDS measured at the last visit was significantly correlated with chronological age (r = -0.618, p = 0.032), bone age (r = -0.582, p = 0.047) and height SDS (r = 0.938, p < 0.001) at the beginning of treatment. No adverse events were reported on rhGH therapy which was never discontinued. Conclusion: These data showed that impaired GH secretion is not uncommon in SHOX deficiency subjects, and that rhGH therapy may be effective in increasing height in most of these patients independent of their GH secretory status, without causing any adverse events of concern

    Glucose-induced down regulation of thiamine transporters in the kidney proximal tubular epithelium produces thiamine insufficiency in diabetes

    Get PDF
    Increased renal clearance of thiamine (vitamin B1) occurs in experimental and clinical diabetes producing thiamine insufficiency mediated by impaired tubular re-uptake and linked to the development of diabetic nephropathy. We studied the mechanism of impaired renal re-uptake of thiamine in diabetes. Expression of thiamine transporter proteins THTR-1 and THTR-2 in normal human kidney sections examined by immunohistochemistry showed intense polarised staining of the apical, luminal membranes in proximal tubules for THTR-1 and THTR-2 of the cortex and uniform, diffuse staining throughout cells of the collecting duct for THTR-1 and THTR-2 of the medulla. Human primary proximal tubule epithelial cells were incubated with low and high glucose concentration, 5 and 26 mmol/l, respectively. In high glucose concentration there was decreased expression of THTR-1 and THTR-2 (transporter mRNA: −76% and −53% respectively, p<0.001; transporter protein −77% and −83% respectively, p<0.05), concomitant with decreased expression of transcription factor specificity protein-1. High glucose concentration also produced a 37% decrease in apical to basolateral transport of thiamine transport across cell monolayers. Intensification of glycemic control corrected increased fractional excretion of thiamine in experimental diabetes. We conclude that glucose-induced decreased expression of thiamine transporters in the tubular epithelium may mediate renal mishandling of thiamine in diabetes. This is a novel mechanism of thiamine insufficiency linked to diabetic nephropathy

    Microscope and microâ camera assessment of Schneiderian membrane perforation via transcrestal sinus floor elevation: A randomized ex vivo study

    Full text link
    ObjectiveWe sought to assess the effectiveness of using a microscope and nonâ invasive camera for assessing sinus membrane perforations during transcrestal sinus floor elevation (TSFE).Materials and methodsFive fresh human cadaver heads corresponding to eight maxillary sinuses (six bilateral and two unilateral) underwent 4 TSFEs per sinus (a total of 32 single site elevations). Each elevation was randomly assigned to receive a three or six mm membrane elevation height (MEH). A microscope and microâ camera were used to assess the sinus membrane perforation. Afterwards, radiological and clinical membrane perforation assessments were performed. The statistical analysis results are expressed using the means, standard deviations, range values of the residual ridge height (RRH), residual ridge width (RRW), sinus membrane thickness (SMT) and incidence of perforation (IoP). Generalized linear methods were used to test for the correlation of RRH and MEH to the microscope and microâ camera perforation assessments and the correlation of microscope and microâ camera assessments with the postâ operative CBCT and crestal liquid evaluation.ResultsThe cumulative percentage of IoP was 40.62%, (23.07% with 3 mm MEH, and 76.92% with 6 mm MEH, p < 0.05). The perforation assessed using either the microscope or microâ camera coincided with the postâ operative CBCT and crestal liquid assessment in 87.55% sites. No significant correlation was found between the microscope or microâ camera assessments with RRH or MEH.ConclusionApplication of a microscope and microâ camera during transcrestal sinus floor elevation may allow the detection of the integrity of the Schneiderian membrane with greater than 85% accuracy in this ex vivo model.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149727/1/clr13453.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149727/2/clr13453_am.pd
    corecore